torch.clamp(input, min, max, out=None)

本文详细介绍了PyTorch中的clamp函数,该函数用于将输入张量的每个元素限制在一个指定范围内。通过实例演示了如何使用clamp函数,并展示了其在处理随机生成的4x1张量时的效果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

torch.clamp(input, min, max, out=None) → Tensor
将输入input张量每个元素的夹紧到区间 [min,max],并返回结果到一个新张量。
input={min,if input &lt;= mininput,if min&lt;input &lt;maxmax,if input &gt;= max input = \begin{cases} min, &amp; \text{if $input $ &lt;= min} \\ input, &amp; \text{if min&lt;$input $ &lt;max}\\ max, &amp; \text{if $input$ &gt;= max} \end{cases} input=min,input,max,if input <= minif min<input <maxif input >= max

import torch
x = torch.randn(4, 1)

print('tensor原型:',x)

print(torch.clamp(x, -0.5, 0.5))

运行结果:

tensor原型: tensor([[-0.6572],
        [ 0.8355],
        [-0.9475],
        [-0.0340]])
tensor([[-0.5000],
        [ 0.5000],
        [-0.5000],
        [-0.0340]])
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值