神经网络论文选读
文章平均质量分 90
库页
这个作者很懒,什么都没留下…
展开
-
姿态检查整理--07-RMPE: Regional Multi-Person Pose Estimation
RMPE: Regional Multi-Person Pose Estimation多人姿态估计top-down方法,多人情况下小的定位与识别的错误难以避免,这篇文章提出的方法是regional multiperson pose estimation(RMPE),包括三个部分: Symmetric Spatial Transformer Network (SSTN), Parametric Pos原创 2017-11-27 15:39:08 · 4923 阅读 · 1 评论 -
姿态检测整理--06-Associative Embedding: End-to-End Learning for Joint Detection and Grouping
Associative Embedding: End-to-End Learning for Joint Detection and Grouping(发表于2017年6月)是bottom-up方法。这篇文章提出的方法是同时输出检测目标和分组,所以是一站式的方法,而且还用在了两个小领域:多人姿态检查,目标分割。这篇论文读起来非常难懂,不是因为晦涩,而是因为作者定位太高。以后写论文,创新点就是要当作创原创 2017-11-27 15:27:57 · 7218 阅读 · 0 评论 -
姿态检测整理--01-Stacked Hourglass Networks for Human Pose Estimation
Stacked Hourglass Networks for Human Pose Estimation(发表于2016年)基本上是目前姿态研究的基础网络,具有bottom-up和top-down二者特性。bottom-up是先得到肢体再归并到不同个体。姿态检测的history:人们开始从传统方法[2-9]转而研究深度神经网络在这方面的应用,是Toshev[24]成功应用神经网络估计人类姿态,他使用原创 2017-11-27 15:14:11 · 4133 阅读 · 0 评论 -
姿态论文整理--05-Learning feature pyramids for human pose estimation
Learning feature pyramids for human pose estimation(2017年发表)如果说有人注意到了pose estimation中没人做过形态的扭曲而写了一篇global & local noramlization,从而将人体形态调整到一个固定的方位。那么这篇文章就是注意到了没人在pose estimation中做过目标对象的缩放而做了一个肢体因而做了这篇论文原创 2017-11-25 20:55:26 · 2970 阅读 · 1 评论 -
姿态论文整理--04-Human pose estimation using global and local normalization
Human pose estimation using global and local normalization(中科大的论文)也是bottom-up,人体姿态估计分为两大部分,关节检测,关节的空间位置匹配。这篇论文主要将精力放到后者上面。对此提出了两阶段的归一化(感觉在这篇文章里面称为标准化更好),躯干的标准化,肢体的标准化。这篇文章的目的是想提出类似与PCA normalization(wh原创 2017-11-25 20:11:55 · 1017 阅读 · 0 评论 -
姿态论文整理--03-Multi-Context Attention for human pose estimation
Multi-Context Attention for human pose estimation(发表与2017年2月)这篇论文的关键点是构建多尺度下的CNN,研究尺度的变化是此论文的创新的地方,所得到的网络是端到端的框架结构。整体方法:首先使用stacked Hourglass堆叠沙漏网络的的attention map 热点图。然后使用CRF(conditional random field)得原创 2017-11-25 17:46:42 · 2485 阅读 · 2 评论 -
姿态论文整理--02-Realtime Multi-Person 2D Pose Estimation using Part Affinity Fields
Realtime Multi-Person 2D Pose Estimation using Part Affinity Fields(发表于2017年4月14)可以对多人场景的人体姿态进行识别,得到2D火柴棒。这篇论文是bottom-up(先检测肢干[keypoints or parts],再归类为不同个体)方法。其中构建肢干间联系是这篇文章的重点。许多方法都是单人姿态估计,这篇是处理多人场景,所原创 2017-11-25 16:55:24 · 1358 阅读 · 0 评论 -
神经网络--姿态识别论文综述备忘录
关于姿态的论文下载及意义的有关说明(2017年11月23日):链接1–(较为概括但简略)首先是知乎有一个2017年姿态方面的论文/相关工作的一个总结。所以直接照搬过来,一个比较高屋建瓴的综述性的文章。https://zhuanlan.zhihu.com/p/27293180 《VALSE2017系列之三:人体姿态识别领域年度进展报告》[1]。这篇综述性质的科普问所幸被收录在一个该领域的以为研究博士的原创 2017-11-21 21:58:10 · 5392 阅读 · 3 评论 -
cascade learning 级联学习 learning SURF Cascade for Fast band Accurate Object Detection
cascade learning 级联学习,前深度学习方法关于这个话题有个小博客,AdaBoost和Cascade,http://www.jianshu.com/p/bfa54561960e 还有这个《基于cascade的object detection》论文: learning SURF Cascade for Fast band Accurate Object Detection 这篇论文是原创 2017-12-05 10:27:40 · 3008 阅读 · 0 评论