假设已经计算出的两个状态a和b满足A[a] < A[b]且d[a] = d[b],则对于后续所有的状态i(即i > a且i > b)来说,a并不会比b差——如果b满足A[b] < A[i]的条件,a肯定也满足,且二者的d值相同;但反过来却不一定了,a满足A[a] < A[i]的条件时,b却不一定满足。换句话说,如果我们只保留a,一定不会丢失最优解。
这样,对于相同的d值,只需保留A最小的一个。设g[i]表示d值为i的最小状态编号(如果不存在,g[i]定义为无穷大INF)。根据上述定理可以证明:
g[1] <= g[2] <= g[3] <= …… <= g[n]
注意上述g的值是动态改变的。对于一个给定的状态i,我们只考虑在之前已经计算过的状态j(即j < i),上述g序列也是基于这些状态的,随着i的不断增大,要考虑的状态越来越多,g也随之发生变化。在给定状态i时,可以用二分查找 得到满足g[k] >= A[i]的第一个下标k,则d[i]=k,此时A[i] < g[k],而d[i]=k,所以更新g[k]=A[i]。
#include<iostream>
#include<algorithm>
#include<cstring>
using namespace std;
#define INF 1000000
int main(){
int A[100],d[100],g[100];
int n;
cin>>n;
for(int i=0;i<n;i++)
cin>>A[i];
for(int i=1;i<=n;i++)g[i]=INF;
for(int i=0;i<n;i++){
int k=lower_bound(g+1,g+n+1,A[i])-g;
d[i]=k;
g[k]=A[i];
}
for(int i=0;i<n;i++)
cout<<d[i]<<ends;
}