最长上升子序列O(nlogn)

假设已经计算出的两个状态a和b满足A[a] < A[b]且d[a] = d[b],则对于后续所有的状态i(即i > a且i > b)来说,a并不会比b差——如果b满足A[b] < A[i]的条件,a肯定也满足,且二者的d值相同;但反过来却不一定了,a满足A[a] < A[i]的条件时,b却不一定满足。换句话说,如果我们只保留a,一定不会丢失最优解。
这样,对于相同的d值,只需保留A最小的一个。设g[i]表示d值为i的最小状态编号(如果不存在,g[i]定义为无穷大INF)。根据上述定理可以证明:
g[1] <= g[2] <= g[3] <= …… <= g[n]
注意上述g的值是动态改变的。对于一个给定的状态i,我们只考虑在之前已经计算过的状态j(即j < i),上述g序列也是基于这些状态的,随着i的不断增大,要考虑的状态越来越多,g也随之发生变化。在给定状态i时,可以用二分查找 得到满足g[k] >= A[i]的第一个下标k,则d[i]=k,此时A[i] < g[k],而d[i]=k,所以更新g[k]=A[i]。

#include<iostream>
#include<algorithm>
#include<cstring>
using namespace std;
#define INF 1000000
int main(){
    int A[100],d[100],g[100];
    int n;
    cin>>n;
    for(int i=0;i<n;i++)
        cin>>A[i];

    for(int i=1;i<=n;i++)g[i]=INF;

    for(int i=0;i<n;i++){
        int k=lower_bound(g+1,g+n+1,A[i])-g;
        d[i]=k;
        g[k]=A[i];
    }

    for(int i=0;i<n;i++)
        cout<<d[i]<<ends;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值