def softmax(x):
if len(x.shape) > 1:
x=np.exp(x)/ np.sum(np.exp(x), axis=1).reshape(-1,1)
else:
x=np.exp(x) / np.sum(np.exp(x))
return x
导入本地包示例:
from …classifiers.Vgg import vgg
Softmax函数实现解析
本文介绍了一种Softmax函数的实现方法,该方法能够处理一维和多维数组,并通过numpy库进行数值稳定性的优化。此外,还展示了如何从本地导入自定义的Vgg分类器。
def softmax(x):
if len(x.shape) > 1:
x=np.exp(x)/ np.sum(np.exp(x), axis=1).reshape(-1,1)
else:
x=np.exp(x) / np.sum(np.exp(x))
return x
导入本地包示例:
from …classifiers.Vgg import vgg

被折叠的 条评论
为什么被折叠?