Douhh_sisy
码龄7年
关注
提问 私信
  • 博客:104,862
    104,862
    总访问量
  • 24
    原创
  • 1,765,398
    排名
  • 33
    粉丝
  • 0
    铁粉
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:福建省
  • 加入CSDN时间: 2017-09-20
博客简介:

Douhh_sisy的博客

查看详细资料
个人成就
  • 获得41次点赞
  • 内容获得10次评论
  • 获得299次收藏
  • 代码片获得389次分享
创作历程
  • 5篇
    2019年
  • 22篇
    2018年
  • 2篇
    2017年
成就勋章
TA的专栏
  • ES
    2篇
  • java
  • 机械设计
    1篇
  • Linux
    1篇
  • python
    7篇
  • numpy
    2篇
  • 机器学习
    18篇
  • pandas
    1篇
  • matplotlib
    2篇
  • kaggle
    4篇
  • scikit-learn
    14篇
  • pytorch
    1篇
兴趣领域 设置
  • 人工智能
    自然语言处理nlp数据分析
创作活动更多

如何做好一份技术文档?

无论你是技术大神还是初涉此领域的新手,都欢迎分享你的宝贵经验、独到见解与创新方法,为技术传播之路点亮明灯!

182人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

python操作ES的增、删、改、查(单条数据、批量加载、根据id更新、根据id删除)

废话不多说直接上干货!# ES相关包from elasticsearch import Elasticsearchfrom elasticsearch.helpers import bulk class ElasticSearchClient(object): # 启动ES @staticmethod def get_es_servers(): ...
原创
发布博客 2019.10.17 ·
3625 阅读 ·
0 点赞 ·
0 评论 ·
8 收藏

ES及Head插件安装

1、 下载EShttps://www.elastic.co/cn/downloads/past-releases#elasticsearch选择版本6.2.42、 启动双击bin目录下双击elasticsearch.bat即可,输入地址在浏览器中输入“http://127.0.0.1:9200/”,出现一下界面,表示启动成功。3、 安装ElasticSearch管理插件安装He...
原创
发布博客 2019.10.16 ·
444 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

决策树可视化代码

import osimport timeimport pydotplusimport numpy as npfrom sklearn import treefrom sklearn.externals.six import StringIOfrom sklearn.model_selection import train_test_splitprint('Step 1.Loadi...
转载
发布博客 2019.01.18 ·
832 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

决策树模型参数释义

转自https://blog.csdn.net/qq_16000815/article/details/80954039'''scikit-learn中有两类决策树,它们均采用优化的CART决策树算法。'''from sklearn.tree import DecisionTreeRegressor'''回归决策树'''DecisionTreeRegressor(criterio...
转载
发布博客 2019.01.18 ·
4759 阅读 ·
3 点赞 ·
0 评论 ·
16 收藏

流行的机器学习数据集

机器学习算法需要作用于数据,而数据的本质则决定了应用的机器学习算法是否合适,而数据的质量也会决定算法表现的好坏程度。所以会研究数据,会分析数据很重要。本文作为学习研究数据系列博文的开篇,列举了4个最流行的机器学习数据集。IrisIris也称鸢尾花卉数据集,是一类多重变量分析的数据集。通过花萼长度,花萼宽度,花瓣长度,花瓣宽度4个属性预测鸢尾花卉属于(Setosa,Versicolour,V...
转载
发布博客 2019.01.18 ·
341 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

pytorch搭建神经网络(回归)

import torchimport torch.nn.functional as F # 激励函数都在这x = torch.unsqueeze(torch.linspace(-1, 1, 100), dim=1) # x data (tensor), shape=(100, 1)y = x.pow(2) + 0.2*torch.rand(x.size()) ...
原创
发布博客 2018.06.26 ·
949 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

pytorch搭建神经网络(回归)

import torchimport torch.nn.functional as F # 激励函数都在这x = torch.unsqueeze(torch.linspace(-1, 1, 100), dim=1) # x data (tensor), shape=(100, 1)y = x.pow(2) + 0.2*torch.rand(x.size()) ...
原创
发布博客 2018.06.26 ·
3062 阅读 ·
0 点赞 ·
0 评论 ·
7 收藏

sklearn实战:对文档进行聚类分析(KMeans算法)

%matplotlib inlineimport matplotlib.pyplot as pltimport numpy as npfrom time import timefrom sklearn.datasets import load_filesprint("loading documents ...")t = time()docs = load_files('dat...
原创
发布博客 2018.06.10 ·
3235 阅读 ·
1 点赞 ·
1 评论 ·
6 收藏

sklearn实战:KMeans算法

%matplotlib inlineimport matplotlib.pyplot as pltimport numpy as npfrom sklearn.datasets import make_blobsX, y = make_blobs(n_samples=200, n_features=2, cen...
原创
发布博客 2018.06.10 ·
1185 阅读 ·
1 点赞 ·
0 评论 ·
4 收藏

sklearn实战:文档分类预测(朴素贝叶斯算法)

%matplotlib inlineimport matplotlib.pyplot as pltimport numpy as npfrom time import timefrom sklearn.datasets import load_filesprint("loading train dataset ...")t = time()news_train = load_...
原创
发布博客 2018.06.09 ·
1587 阅读 ·
1 点赞 ·
0 评论 ·
5 收藏

sklearn实战:SVM(线性核函数,多项式核函数,高斯核函数比较)

%matplotlib inlineimport matplotlib.pyplot as pltimport numpy as npdef plot_hyperplane(clf, X, y, h=0.02, draw_sv=True, title='hype...
原创
发布博客 2018.06.08 ·
23322 阅读 ·
6 点赞 ·
0 评论 ·
68 收藏

kaggle:预测泰坦尼克号幸存者(决策树算法,网格搜索模型参数调优)

%matplotlib inlineimport matplotlib.pyplot as pltimport numpy as npimport pandas as pddef read_dataset(fname): # 指定第一列作为行索引 data = pd.read_csv(fname, index_col=0) #列索引为csv文件第一行 ...
原创
发布博客 2018.06.07 ·
3426 阅读 ·
2 点赞 ·
0 评论 ·
12 收藏

bagging,random forest,boosting(adaboost、GBDT),XGBoost小结

Bagging从原始样本集中抽取训练集。每轮从原始样本集中使用Bootstraping(有放回)的方法抽取n个训练样本(在训练集中,有些样本可能被多次抽取到,而有些样本可能一次都没有被抽中)。共进行k轮抽取,得到k个训练集。(我们这里假设k个训练集之间是相互独立的,事实上不是完全独立)每次使用一个训练集得到一个模型,k个训练集共得到k个模型。但是是同种模型。(注:k个训练集虽然有重合不完全...
原创
发布博客 2018.06.07 ·
765 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

Kaggle:Predicting a Biological Response

地址戳我 # 基本CSV读写操作 # 我们需要读取给定的训练数据,再进行后续的数据(特征等)处理 def read_data(file_name): f = open(file_name) #ignore header f.readline() samples = [] target =...
转载
发布博客 2018.06.07 ·
648 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

Kaggle:San Francisco Crime Classification

比赛地址https://www.kaggle.com/c/sf-crime 这里用logistic regression来完成这个预测问题。 # 基本CSV读写操作 # 我们需要读取给定的训练数据,再进行后续的数据(特征等)处理def read_data(file_name): f = open(file_name) #ignore header ...
转载
发布博客 2018.06.07 ·
899 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

sklearn实战:乳腺癌检测(逻辑回归算法)

%matplotlib inlineimport matplotlib.pyplot as pltimport numpy as np# 载入数据from sklearn.datasets import load_breast_cancercancer = load_breast_cancer()X = cancer.datay = cancer.targetprint('...
原创
发布博客 2018.06.07 ·
8419 阅读 ·
2 点赞 ·
1 评论 ·
55 收藏

sklearn实战:房价预测(线性回归)

%matplotlib inlineimport matplotlib.pyplot as pltimport numpy as npfrom sklearn.datasets import load_bostonboston = load_boston()X = boston.datay = boston.targetX.shape(506, 13)X[0]...
原创
发布博客 2018.06.07 ·
2210 阅读 ·
1 点赞 ·
0 评论 ·
3 收藏

sklearn实战:使用线性回归算法拟合正弦函数

%matplotlib inlineimport matplotlib.pyplot as pltimport numpy as npn_dots = 200X = np.linspace(-2 * np.pi, 2 * np.pi, n_dots)Y = np.sin(X) + 0.2 * np.random.rand(n_dots) - 0.1X = X.reshape(-...
原创
发布博客 2018.06.07 ·
5167 阅读 ·
0 点赞 ·
0 评论 ·
8 收藏

sklearn实战:使用knn进行回归拟合

%matplotlib inlineimport matplotlib.pyplot as pltimport numpy as np# 生成训练样本n_dots = 40X = 5 * np.random.rand(n_dots, 1)y = np.cos(X).ravel()# 添加一些噪声y += 0.2 * np.random.rand(n_dots) - 0.1...
原创
发布博客 2018.06.06 ·
4880 阅读 ·
0 点赞 ·
0 评论 ·
11 收藏

sklearn实战:糖尿病预测(knn算法)

%matplotlib inlineimport matplotlib.pyplot as pltimport numpy as npimport pandas as pd# 加载数据data = pd.read_csv('datasets/pima-indians-diabetes/diabetes.csv')print('dataset shape {}'.for...
原创
发布博客 2018.06.06 ·
7468 阅读 ·
4 点赞 ·
4 评论 ·
47 收藏
加载更多