瑞芯微RK3399Pro平台YOLOv4 pytorch模型转RKNN模型失败

报错:The following operators are not implemented: [‘aten::detach’, ‘aten::to’, ‘aten::floor’, 'aten::softplus]
解决办法:将rknn-toolkit 升级到V1.6.1
rknn-toolkit V1.6.1 支持的算子链接

将YOLOv5 PyTorch模型换为TensorRT模型需要以下步骤: 1. 安装TensorRT和PyTorch。 2. 下载并安装yolov5。 3. 使用PyTorch将yolov5模型换为ONNX格式。 ``` python models/export.py --weights yolov5s.pt --img 640 --batch 1 --include onnx # yolov5s ``` 4. 安装ONNX-TensorRT。 ``` git clone https://github.com/onnx/onnx-tensorrt.git cd onnx-tensorrt git submodule update --init --recursive mkdir build && cd build cmake .. -DTENSORRT_ROOT=/path/to/tensorrt -DCMAKE_CXX_COMPILER=g++-7 make -j sudo make install ``` 5. 使用ONNX-TensorRT将ONNX模型换为TensorRT模型。 ``` import onnx import onnx_tensorrt.backend as backend model = onnx.load("yolov5s.onnx") # Load the ONNX model engine = backend.prepare(model, device="CUDA:0") # Prepare the TensorRT model with open("yolov5s.engine", "wb") as f: # Serialize the TensorRT engine f.write(engine.serialize()) ``` 6. 测试TensorRT模型的性能和准确性。 ``` import pycuda.driver as cuda import pycuda.autoinit import numpy as np import time # Load the TensorRT engine with open("yolov5s.engine", "rb") as f: engine = cuda.Context().deserialize_cuda_engine(f.read()) # Create the TensorRT inference context context = engine.create_execution_context() # Allocate the input and output buffers input_shape = engine.get_binding_shape(0) output_shape = engine.get_binding_shape(1) input_buffer = cuda.mem_alloc(np.prod(input_shape) * 4) output_buffer = cuda.mem_alloc(np.prod(output_shape) * 4) # Prepare the input data input_data = np.random.rand(*input_shape).astype(np.float32) # Copy the input data to the input buffer cuda.memcpy_htod(input_buffer, input_data) # Run inference start_time = time.time() context.execute_v2(bindings=[int(input_buffer), int(output_buffer)]) end_time = time.time() # Copy the output data to the output buffer output_data = np.empty(output_shape, dtype=np.float32) cuda.memcpy_dtoh(output_data, output_buffer) # Print the inference time and output data print("Inference time: {} ms".format((end_time - start_time) * 1000)) print("Output shape: {}".format(output_shape)) print("Output data: {}".format(output_data)) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值