caffe net implement

#include <algorithm>
#include <map>
#include <set>
#include <string>
#include <utility>
#include <vector>

#include "caffe/common.hpp"
#include "caffe/layer.hpp"
#include "caffe/net.hpp"
#include "caffe/proto/caffe.pb.h"
#include "caffe/util/insert_splits.hpp"
#include "caffe/util/io.hpp"
#include "caffe/util/math_functions.hpp"
#include "caffe/util/upgrade_proto.hpp"

#include "caffe/util/channel.hpp"
#include "caffe/util/mpi_functions.hpp"

#include "caffe/test/test_caffe_main.hpp"
#include "caffe/vision_layers.hpp"

namespace caffe {
/*
功能:调用Init函数初始化网络
输入:NetParameter& param
输出:无
*/
template <typename Dtype>
Net<Dtype>::Net(const NetParameter& param) {
  Init(param);
}
/*
功能:调用Init函数初始化网络
输入:string& param_file
输出:无
*/
template <typename Dtype>
Net<Dtype>::Net(const string& param_file, Phase phase) {
  NetParameter param;
  ReadNetParamsFromTextFileOrDie(param_file, ¶m);
  param.mutable_state()->set_phase(phase);
  Init(param);
}
/*
功能:初始化网络
输入:NetParameter& in_param
输出:无
步骤:
<1> 调用InsertSplits()函数从in_param读入新网络到param
<2> 定义name_,blob_name_to_idx,available_blobs,num_layers
<3> param.input_size()返回输入层blob的个数;
    param.input(i)表示第i个blob的名字;
    param.layers_size()返回网络的层数。
<4> 对每一个输入层的blob:
    产生一块和当前blob一样大的空间 e.g. imput_dim=[12 55 66 39 20 24 48 64]表示第一个blob的四个维数为 12 55 66 39,第二个为 20 24 48 64 接着blob_pointer指向这块空间
    blob_pointer压到blobs_中 vector<shared_ptr<Blob<Dtype>>> blobs_
    blob_name压到blob_names_中 vector<string> blob_names_
    param.force_backward()压到blob_need_backward_中vector<bool> blob_need_backward_
    i 压到 net_input_blob_indices_中 net_input_blob_indices_ -> vector
    blob_pointer.get() 压到 net_input_blobs_中
    注意与blobs_的区别
    vector<shared_ptr<Blob<Dtype>>> blobs_
    vector<Blob<Dtype>*> net_input_blobs_
    shared_ptr类型的参数调用.get()则得到Blob*类型
    map<string, int> blob_name_to_idx
    初始化为输入层的每个blob的名字 set<string> available_blobs
    计算所需内存 memory_used += blob_pointer->count()

<5> 存每一层的输入blob指针 vector<vector<Blob<Dtype>*> > bottom_vecs_
    存每一层输入(bottom)的id vector<vector<int> > bottom_id_vecs_
    存每一层输出(top)的blob vector<vector<Blob<Dtype>*> > top_vecs_
    用网络的层数param.layers_size()去初始化上面四个变量
    vector<vector<int> > top_id_vecs_
<6> 对第i层(很大的一个for循环):
    param.layers(i)返回的是关于第当前层的参数:
    layer_param = param.layers(i)
    把当前层的参数转换为shared_ptr<Layer<Dtype>>,并压入到layers_中
    把当前层的名字压入到layer_names_:vector<string> layer_names_
    判断当前层是否需要反馈 need_backward = param.force_backward()

    下面开始产生当前层:分为处理bottom的blob和top的blob两个步骤
    对第j个bottom的blob:
        layer_param.bottom_size()存的是当前层的输入blob数量
        layer_param.bottom(j)存的是第j个输入blob的名字
        读取当前blob的id,其中blob_name_to_idx在输入层初始化过了
        blob_name_to_idx[blob_name] = i
        输出当前blob的名字
        存入第j个输入blob的指针bottom_vecs_[i].push_back(blobs_[blob_id].get())
        存入第j个输入blob的id bottom_id_vecs_[i].push_back(blob_id)
        更新need_backward
        从available_blobs中删除第j个blob的名字

    对第j个top的blob:
        layer_param.top_size()存的是当前层的输出blob数量
        layer_param.top(j)存的是第j个输出blob的名字
        判断是否进行同址计算
        输出当前blob的名字
        定义一块新的blob空间,用blob_pointer指向这块空间
        把这个指针存入到blobs_中
        把blob_name、force_backward、idx存入对应的容器中
        向available_blobs插入当前blob的名字
        top_vecs_[i]对于第i层,插入当前blob的指针
        top_id_vecs_[i]对于第i层,插入当前blob的id
    输出当前层位于top的blob的信息
    计算所需内存
    判断当前层i是否需要backward

<7> 所有名字在available_blobs中的blob为当前层的输出blob,存入net_output_blobs_中
<8> 建立每个blob的name和index的对应关系map:blob_names_index_
<9> 建立每个层的name和index的对应关系map:layer_names_index_
<10> 调用GetLearningRateAndWeightDecay函数
*/
template <typename Dtype>
void Net<Dtype>::Init(const NetParameter& in_param) {
  // Set phase from the state.
  phase_ = in_param.state().phase();
  // Filter layers based on their include/exclude rules and
  // the current NetState.
  NetParameter filtered_param;
  FilterNet(in_param, &filtered_param);
  LOG(INFO) << "Initializing net from parameters: " << std::endl
            << filtered_param.DebugString();
  // Create a copy of filtered_param with splits added where necessary.
  NetParameter param;
  InsertSplits(filtered_param, ¶m);
  // Basically, build all the layers and set up their connections.
  name_ = param.name();
  map<string, int> blob_name_to_idx;//blob_name_to_idx是一个map,其关键字是不重复的
  set<string> available_blobs;//available_blobs是一个set,其关键字是不重复的
  CHECK(param.input_dim_size() == 0 || param.input_shape_size() == 0)
      << "Must specify either input_shape OR deprecated input_dim, not both.";
  if (param.input_dim_size() > 0) {
    // Deprecated 4D dimensions.
    CHECK_EQ(param.input_size() * 4, param.input_dim_size())
        << "Incorrect input blob dimension specifications.";
  } else {
    CHECK_EQ(param.input_size(), param.input_shape_size())
        << "Exactly one input_shape must be specified per input.";
  }
  memory_used_ = 0;
  // set the input blobs
  for (int input_id = 0; input_id < param.input_size(); ++input_id) {
    const int layer_id = -1;  // inputs have fake layer ID -1
    AppendTop(param, layer_id, input_id, &available_blobs, &blob_name_to_idx);
  }
  DLOG(INFO) << "Memory required for data: " << memory_used_ * sizeof(Dtype);
  // For each layer, set up its input and output
  bottom_vecs_.resize(param.layer_size());
  top_vecs_.resize(param.layer_size());
  bottom_id_vecs_.resize(param.layer_size());
  param_id_vecs_.resize(param.layer_size());
  top_id_vecs_.resize(param.layer_size());
  bottom_need_backward_.resize(param.layer_size());

  for (int layer_id = 0; layer_id < param.layer_size(); ++layer_id) {
    // Inherit phase from net if unset.
    if (!param.layer(layer_id).has_phase()) {
      param.mutable_layer(layer_id)->set_phase(phase_);//实参phase_是网络的phase,为模板类layer设置shape_属性  
    }
    // Setup BN params implicitly.
    if (param.layer(layer_id).type() == "BN") {
      LayerParameter* layer_param = param.mutable_layer(layer_id);
      if (layer_param->param_size() > 2) {
        LOG(FATAL) << "Layer " << layer_param->name()
                   << " must have no more than two specified params";
      }
      while (layer_param->param_size() < 4) {
        ParamSpec* param = layer_param->add_param();
        if (layer_param->param_size() <= 2) {
          param->set_lr_mult(1);
          param->set_decay_mult(0);
        } else {
          param->set_lr_mult(0);
          param->set_decay_mult(0);
        }
      }
    }
    // Setup layer.
    const LayerParameter& layer_param = param.layer(layer_id);
 //检查LayerParameter类型propagate_down成员的个数师傅达标 
    if (layer_param.propagate_down_size() > 0) {
      CHECK_EQ(layer_param.propagate_down_size(),
          layer_param.bottom_size())
          << "propagate_down param must be specified "
          << "either 0 or bottom_size times ";
    }
    layers_.push_back(LayerRegistry<Dtype>::CreateLayer(layer_param));
    layer_names_.push_back(layer_param.name());
    LOG(INFO) << "Creating Layer " << layer_param.name();
    bool need_backward = false;

    // Figure out this layer's input and output
    #ifdef USE_MPI
    vector<bool> source_layer_need_sync;
    for (int bottom_id = 0; bottom_id < layer_param.bottom_size();
         ++bottom_id) {

      const int blob_id = AppendBottom(param, layer_id, bottom_id,
                                       &available_blobs, &blob_name_to_idx);
      int src_layer_id = top_layer_indices_[blob_id].first;
      if (src_layer_id>=0) source_layer_need_sync.push_back(layers_[src_layer_id]->need_sync());
      if (source_layer_need_sync.size()>0){
        CHECK_EQ(source_layer_need_sync.back(), source_layer_need_sync[0])
          <<" blob "<<layer_param.bottom(0)
          <<" and blob "<< layer_param.bottom(bottom_id)
          <<" are from layers with different paralle mode. This is not supported.";
      }
      // If a blob needs backward, this layer should provide it.
/*blob_need_backward_,整个网络中,所有非参数blob,是否需要backward。注意,这里所说的所有非参数blob其实指的是AppendTop函数中遍历的所有top blob,并不是每一层的top+bottom,因为这一层的top就是下一层的bottom,网络是一层一层堆起来的。 
*/
      need_backward |= blob_need_backward_[blob_id];
    }

    if (layers_[layer_id]->is_gathering()){
      layers_[layer_id]->set_need_sync(false);
    } else {
      if(layers_[layer_id]->is_scattering()){
        layers_[layer_id]->set_need_sync(true);
      } else {
        if ((source_layer_need_sync.size() > 0)) {
          layers_[layer_id]->set_need_sync(source_layer_need_sync[0]);
          LOG(INFO) << "This layer is inheriting previous layer's sync mode: " << source_layer_need_sync[0];
        }
      }
    }
    #else
    for (int bottom_id = 0; bottom_id < layer_param.bottom_size();
         ++bottom_id) {
      const int blob_id = AppendBottom(param, layer_id, bottom_id,
                                       &available_blobs, &blob_name_to_idx);
      // If a blob needs backward, this layer should provide it.
      need_backward |= blob_need_backward_[blob_id];
    }
    #endif

    int num_top = layer_param.top_size();
    for (int top_id = 0; top_id < num_top; ++top_id) {
      AppendTop(param, layer_id, top_id, &available_blobs, &blob_name_to_idx);
    }
    // If the layer specifies that AutoTopBlobs() -> true and the LayerParameter
    // specified fewer than the required number (as specified by
    // ExactNumTopBlobs() or MinTopBlobs()), allocate them here.
    Layer<Dtype>* layer = layers_[layer_id].get();
    if (layer->AutoTopBlobs()) {
      const int needed_num_top =
          std::max(layer->MinTopBlobs(), layer->ExactNumTopBlobs());
      for (; num_top < needed_num_top; ++num_top) {
        // Add "anonymous" top blobs -- do not modify available_blobs or
        // blob_name_to_idx as we don't want these blobs to be usable as input
        // to other layers.
        AppendTop(param, layer_id, num_top, NULL, NULL);
      }
    }
    // After this layer is connected, set it up.
    LOG(INFO) << "Setting up " << layer_names_[layer_id];
//每次循环,都会更新向量blob_loss_weights  
    layers_[layer_id]->SetUp(bottom_vecs_[layer_id], top_vecs_[layer_id]);
    for (int top_id = 0; top_id < top_vecs_[layer_id].size(); ++top_id) {
//blob_loss_weights_,每次遍历一个layer的时候,都会resize blob_loss_weights_, 然后调用模板类layer的loss函数返回loss_weight 
      if (blob_loss_weights_.size() <= top_id_vecs_[layer_id][top_id]) {
        blob_loss_weights_.resize(top_id_vecs_[layer_id][top_id] + 1, Dtype(0));
      }
//top_id_vecs_中存储的最基本元素是blob_id ——> 每一个新的blob都会赋予其一个blob_id,但是这个blob_id可能是会有重复的 
      blob_loss_weights_[top_id_vecs_[layer_id][top_id]] = layer->loss(top_id);
//loss函数返回loss_weight ——> 在模板类的SetUp方法中会调用SetLossWeights来设置其私有数据成员loss_,里面存储的其实是loss_weight  
      LOG(INFO) << "Top shape: " << top_vecs_[layer_id][top_id]->shape_string();
      if (layer->loss(top_id)) {
        LOG(INFO) << "    with loss weight " << layer->loss(top_id);
      }
      memory_used_ += top_vecs_[layer_id][top_id]->count();
    }
    DLOG(INFO) << "Memory required for data: " << memory_used_ * sizeof(Dtype);
    const int param_size = layer_param.param_size();
    const int num_param_blobs = layers_[layer_id]->blobs().size();
//param_size是Layermeter类型对象layer_param中ParamSpec param成员的个数, num_param_blobs是一
//个Layer中learnable parameter blob的个数,param_size <= num_param_blobs  
    CHECK_LE(param_size, num_param_blobs)
        << "Too many params specified for layer " << layer_param.name();
    ParamSpec default_param_spec;
    for (int param_id = 0; param_id < num_param_blobs; ++param_id) {
      const ParamSpec* param_spec = (param_id < param_size) ?
          &layer_param.param(param_id) : &default_param_spec;
      const bool param_need_backward = param_spec->lr_mult() > 0;//need backward 则为真。
      need_backward |= param_need_backward;
//由param_need_backward来决定need_backward是否为真,并且,只要有一次遍历使得need_backward为真,则这个for循环结束后,need_backward也为真
      layers_[layer_id]->set_param_propagate_down(param_id,
                                                  param_need_backward);
//设定一个Layer的parameter blob 是否需要计算diff backward--->set_param_propagate_down是模板类Layer的方法。  
    }
    for (int param_id = 0; param_id < num_param_blobs; ++param_id) {
 //添加parameter blob,如果当前layer没有parameter blob(num_param_blobs==0),比如RELU,那么就不进入循环,不添加parameter blob  
 //AppendParam只是执行为当前layer添加parameter blob的相关工作,并不会修改与backward的相关属性  
      AppendParam(param, layer_id, param_id);
    }
    // Finally, set the backward flag
    layer_need_backward_.push_back(need_backward);
//在上述的AppendTop函数中,在遍历当前层的每一个top blob的时候都会将一个false(默认值)压入向量blob_need_backward_。在下面的代码中,如果这个layer need backward,则会更新blob_need_backward_
    if (need_backward) {
      for (int top_id = 0; top_id < top_id_vecs_[layer_id].size(); ++top_id) {
        blob_need_backward_[top_id_vecs_[layer_id][top_id]] = true;

        //special treatment for "Gather" layer
        //This layer should be transparent to bp inferring.
        if (strcmp(layers_[layer_id]->type(), "Gather")==0){
          blob_need_backward_[top_id_vecs_[layer_id][top_id]]
              = blob_need_backward_[bottom_id_vecs_[layer_id][top_id]];
        }
      }
    }
  }
  // Go through the net backwards to determine which blobs contribute to the
  // loss.  We can skip backward computation for blobs that don't contribute
  // to the loss.
  // Also checks if all bottom blobs don't need backward computation (possible
  // because the skip_propagate_down param) and so we can skip backward
  // computation for the entire layer
// 需要注意的是,上述代码中关于backward设置的部分,是按照前向的顺序设置的,而下面的代码是按后向顺序修正前向设置的结果。  
// 一个layer是否需要backward computation,主要依据两个方面:(1)该layer的top blob 是否参与loss的计算;(2):该layer的bottom blob 是否需要backward computation,比如Data层一般就不需要backward computation  
  set<string> blobs_under_loss;
  set<string> blobs_skip_backp;
  for (int layer_id = layers_.size() - 1; layer_id >= 0; --layer_id) {
    bool layer_contributes_loss = false;
    bool layer_skip_propagate_down = true;
//为true,则表示当前layer的bottom blob不需要backward computation,即该层不需要backward computation。  
//这个局部变量所表示的意义与caffe.proto里message Layerparameter的propagate_down的定义恰好相反。  
    for (int top_id = 0; top_id < top_vecs_[layer_id].size(); ++top_id) {
      //blob_names_整个网络中,所有非参数blob的name
      const string& blob_name = blob_names_[top_id_vecs_[layer_id][top_id]];
      if (layers_[layer_id]->loss(top_id) ||
          (blobs_under_loss.find(blob_name) != blobs_under_loss.end())) {
        layer_contributes_loss = true;
      }
      if (blobs_skip_backp.find(blob_name) == blobs_skip_backp.end()) {
        layer_skip_propagate_down = false;
      }
      if (layer_contributes_loss && !layer_skip_propagate_down)
        break;//只是跳出当前if语句 
    }
    // If this layer can skip backward computation, also all his bottom blobs
    // don't need backpropagation
    if (layer_need_backward_[layer_id] && layer_skip_propagate_down) {
      layer_need_backward_[layer_id] = false;
      for (int bottom_id = 0; bottom_id < bottom_vecs_[layer_id].size();
               ++bottom_id) {
//bottom_need_backward_,整个网络所有网络层的bottom blob是否需要backward
        bottom_need_backward_[layer_id][bottom_id] = false;
      }
    }
    if (!layer_contributes_loss) { layer_need_backward_[layer_id] = false; }
    if (layer_need_backward_[layer_id]) {
      LOG(INFO) << layer_names_[layer_id] << " needs backward computation.";
    } else {
      LOG(INFO) << layer_names_[layer_id]
                << " does not need backward computation.";
    }
    for (int bottom_id = 0; bottom_id < bottom_vecs_[layer_id].size();//修正前向设置的结果
         ++bottom_id) {
      if (layer_contributes_loss) {
        const string& blob_name =
            blob_names_[bottom_id_vecs_[layer_id][bottom_id]];
        blobs_under_loss.insert(blob_name);//为blobs_under_loss添加新元素
      } else {
        bottom_need_backward_[layer_id][bottom_id] = false;
      }
      if (!bottom_need_backward_[layer_id][bottom_id]) {
        const string& blob_name =
                   blob_names_[bottom_id_vecs_[layer_id][bottom_id]];
        blobs_skip_backp.insert(blob_name);//为blobs_skip_backp添加新元素
      }
    }
  }
  //Handle force_backward if needed.Netparameter类型的force_backward方法  
  if (param.force_backward()) {
    for (int layer_id = 0; layer_id < layers_.size(); ++layer_id) {
      layer_need_backward_[layer_id] = true;
      for (int bottom_id = 0;
           bottom_id < bottom_need_backward_[layer_id].size(); ++bottom_id) {
        bottom_need_backward_[layer_id][bottom_id] =
            bottom_need_backward_[layer_id][bottom_id] ||
            layers_[layer_id]->AllowForceBackward(bottom_id);
        blob_need_backward_[bottom_id_vecs_[layer_id][bottom_id]] =
            blob_need_backward_[bottom_id_vecs_[layer_id][bottom_id]] ||
            bottom_need_backward_[layer_id][bottom_id];
      }
      for (int param_id = 0; param_id < layers_[layer_id]->blobs().size();
           ++param_id) {
        layers_[layer_id]->set_param_propagate_down(param_id, true);
      }
    }
  }
  // In the end, all remaining blobs are considered output blobs.
  for (set<string>::iterator it = available_blobs.begin();
      it != available_blobs.end(); ++it) {
    LOG(INFO) << "This network produces output " << *it;
    net_output_blobs_.push_back(blobs_[blob_name_to_idx[*it]].get());
    net_output_blob_indices_.push_back(blob_name_to_idx[*it]);
  }
  for (size_t blob_id = 0; blob_id < blob_names_.size(); ++blob_id) {
    blob_names_index_[blob_names_[blob_id]] = blob_id;
//第一次使用向量blob_names_index_,逐一添加元素,是一个map  
  }
  for (size_t layer_id = 0; layer_id < layer_names_.size(); ++layer_id) {
    layer_names_index_[layer_names_[layer_id]] = layer_id;
//第一次使用向量layer_names_index_,逐一添加元素,是一个map  
  }
  GetLearningRateAndWeightDecay();
  debug_info_ = param.debug_info();
  LOG(INFO) << "Network initialization done.";
  LOG(INFO) << "Memory required for data: " << memory_used_ * sizeof(Dtype);
}
//FilterNet()给定当前phase/level/stage,移除指定层 
template <typename Dtype>
void Net<Dtype>::FilterNet(const NetParameter& param,
    NetParameter* param_filtered) {
  NetState net_state(param.state());
  param_filtered->CopyFrom(param);
  param_filtered->clear_layer();
  for (int i = 0; i < param.layer_size(); ++i) {
    const LayerParameter& layer_param = param.layer(i);
    const string& layer_name = layer_param.name();
    CHECK(layer_param.include_size() == 0 || layer_param.exclude_size() == 0)
          << "Specify either include rules or exclude rules; not both.";
    // If no include rules are specified, the layer is included by default and
    // only excluded if it meets one of the exclude rules.
    bool layer_included = (layer_param.include_size() == 0);
    for (int j = 0; layer_included && j < layer_param.exclude_size(); ++j) {
      if (StateMeetsRule(net_state, layer_param.exclude(j), layer_name)) {
        layer_included = false;//如果不包含include,只要meet一个include_size(idx)即可
      }
    }
    for (int j = 0; !layer_included && j < layer_param.include_size(); ++j) {
      if (StateMeetsRule(net_state, layer_param.include(j), layer_name)) {
        layer_included = true;//如果包含include,只要符合一个include_size(idx)即可
      }
    }
    if (layer_included) {
      param_filtered->add_layer()->CopyFrom(layer_param);
    }
  }
}
//StateMeetsRule()中net的state是否满足NetStaterule  
template <typename Dtype>
bool Net<Dtype>::StateMeetsRule(const NetState& state,
    const NetStateRule& rule, const string& layer_name) {
  // Check whether the rule is broken due to phase.
  if (rule.has_phase()) {
      if (rule.phase() != state.phase()) {
        LOG(INFO) << "The NetState phase (" << state.phase()
          << ") differed from the phase (" << rule.phase()
          << ") specified by a rule in layer " << layer_name;
        return false;
      }
  }
  // Check whether the rule is broken due to min level.
  if (rule.has_min_level()) {
    if (state.level() < rule.min_level()) {
      LOG(INFO) << "The NetState level (" << state.level()
          << ") is above the min_level (" << rule.min_level()
          << ") specified by a rule in layer " << layer_name;
      return false;
    }
  }
  // Check whether the rule is broken due to max level.
  if (rule.has_max_level()) {
    if (state.level() > rule.max_level()) {
      LOG(INFO) << "The NetState level (" << state.level()
          << ") is above the max_level (" << rule.max_level()
          << ") specified by a rule in layer " << layer_name;
      return false;
    }
  }
  // Check whether the rule is broken due to stage. The NetState must
  // contain ALL of the rule's stages to meet it.
  for (int i = 0; i < rule.stage_size(); ++i) {
    // Check that the NetState contains the rule's ith stage.
    bool has_stage = false;
    for (int j = 0; !has_stage && j < state.stage_size(); ++j) {
      if (rule.stage(i) == state.stage(j)) { has_stage = true; }
    }
    if (!has_stage) {
      LOG(INFO) << "The NetState did not contain stage '" << rule.stage(i)
                << "' specified by a rule in layer " << layer_name;
      return false;
    }
  }
  // Check whether the rule is broken due to not_stage. The NetState must
  // contain NONE of the rule's not_stages to meet it.
  for (int i = 0; i < rule.not_stage_size(); ++i) {
    // Check that the NetState contains the rule's ith not_stage.
    bool has_stage = false;
    for (int j = 0; !has_stage && j < state.stage_size(); ++j) {
      if (rule.not_stage(i) == state.stage(j)) { has_stage = true; }
    }
    if (has_stage) {
      LOG(INFO) << "The NetState contained a not_stage '" << rule.not_stage(i)
                << "' specified by a rule in layer " << layer_name;
      return false;
    }
  }
  return true;
}

// Helper for Net::Init: add a new input or top blob to the net.  (Inputs have
// layer_id == -1, tops have layer_id >= 0.)
template <typename Dtype>
void Net<Dtype>::AppendTop(const NetParameter& param, const int layer_id,
                           const int top_id, set<string>* available_blobs,
                           map<string, int>* blob_name_to_idx) {
  shared_ptr<LayerParameter> layer_param((layer_id >= 0) ?
    (new LayerParameter(param.layer(layer_id))) : NULL);
  const string& blob_name = layer_param ?
      (layer_param->top_size() > top_id ?
          layer_param->top(top_id) : "(automatic)") : param.input(top_id);
  // Check if we are doing in-place computation
  if (blob_name_to_idx && layer_param && layer_param->bottom_size() > top_id &&
      blob_name == layer_param->bottom(top_id)) {
    // In-place computation
    LOG(INFO) << layer_param->name() << " -> " << blob_name << " (in-place)";
    top_vecs_[layer_id].push_back(blobs_[(*blob_name_to_idx)[blob_name]].get());
    top_id_vecs_[layer_id].push_back((*blob_name_to_idx)[blob_name]);
  } else if (blob_name_to_idx &&
             blob_name_to_idx->find(blob_name) != blob_name_to_idx->end()) {
    // If we are not doing in-place computation but have duplicated blobs,
    // raise an error.
    LOG(FATAL) << "Duplicate blobs produced by multiple sources.";
  } else {
    // Normal output.
    if (layer_param) {
      LOG(INFO) << layer_param->name() << " -> " << blob_name;
    } else {
      LOG(INFO) << "Input " << top_id << " -> " << blob_name;
    }
    shared_ptr<Blob<Dtype> > blob_pointer(new Blob<Dtype>());
//blobs只是存储中间结果;每次遍历到一个top blob都会更新blob_id  
    const int blob_id = blobs_.size();
    blobs_.push_back(blob_pointer);
    blob_names_.push_back(blob_name);
    blob_need_backward_.push_back(false);
    top_layer_indices_.push_back(make_pair(layer_id, blob_id));
/*
blob_name_to_idx是一个局部变量,其实它是在当前layer的top blob 和下一层的bottom blob间起着一个桥梁作用。  
blob_name_to_idx中元素的pair是从网络最开始一层一层搭建的过程中压入map的,其中的name和id都是不重复的。name是关键字——不重复是map数据结构的必然要求,id也是不重复的——0,1,2...  
blob_name_to_idx和blobs_一样,在"Normal output"的情形下,每次遍历到一个top blob的时候都会更新  
*/
//添加新元素-->map可以通过下标访问符为(关联)容器添加新元素 
    if (blob_name_to_idx) { (*blob_name_to_idx)[blob_name] = blob_id; }
    if (layer_id == -1) {
      // Set the (explicitly specified) dimensions of the input blob.
      if (param.input_dim_size() > 0) {
        blob_pointer->Reshape(param.input_dim(top_id * 4),
                              param.input_dim(top_id * 4 + 1),
                              param.input_dim(top_id * 4 + 2),
                              param.input_dim(top_id * 4 + 3));
      } else {
        blob_pointer->Reshape(param.input_shape(top_id));
      }
      net_input_blob_indices_.push_back(blob_id);
//当layer_id==-1时,即当前层为输入层的时候,会向net_input_blob_indices_里添加新元素,即add new input blob 
      net_input_blobs_.push_back(blob_pointer.get());
    } else {
      top_id_vecs_[layer_id].push_back(blob_id);
//当layer_id !=-1时,即当前层不是输入层的时候,会向net_input_blob_indices_里添加新元素,即add new top blob 
      top_vecs_[layer_id].push_back(blob_pointer.get());
    }

  }
  if (available_blobs) { available_blobs->insert(blob_name); }
}

// Helper for Net::Init: add a new bottom blob to the net.
template <typename Dtype>
int Net<Dtype>::AppendBottom(const NetParameter& param, const int layer_id,
    const int bottom_id, set<string>* available_blobs,
    map<string, int>* blob_name_to_idx) {
  const LayerParameter& layer_param = param.layer(layer_id);
  const string& blob_name = layer_param.bottom(bottom_id);
  if (available_blobs->find(blob_name) == available_blobs->end()) {
    LOG(FATAL) << "Unknown blob input " << blob_name
               << " (at index " << bottom_id << ") to layer " << layer_id;
  }
//blob_name_to_idx是一个map,其关键字是不重复的。blob_name_to_idx在输入层初始化
//过了-->*blob_name_to_idx)[blob_name] = blob_id
  const int blob_id = (*blob_name_to_idx)[blob_name];
  LOG(INFO) << layer_names_[layer_id] << " <- " << blob_name;
//存储整个网络所有网络层的bottom blob指针,实际上存储的是前一层的top,因为网络是一层一层堆起来的
  bottom_vecs_[layer_id].push_back(blobs_[blob_id].get());//调用shared_ptr类的get()方法提取存储在blobs_中的中间变量
  bottom_id_vecs_[layer_id].push_back(blob_id);
  available_blobs->erase(blob_name);
  bool propagate_down = true;
  // Check if the backpropagation on bottom_id should be skipped
  if (layer_param.propagate_down_size() > 0)
    propagate_down = layer_param.propagate_down(bottom_id);
  const bool need_backward = blob_need_backward_[blob_id] &&
                          propagate_down;//propagate_down为true,则表示参与BP;否则,skip bp
  bottom_need_backward_[layer_id].push_back(need_backward);
  return blob_id;
}

template <typename Dtype>
void Net<Dtype>::AppendParam(const NetParameter& param, const int layer_id,
                             const int param_id) {
//模板类Layer的layer_param方法,返回Layerparameter类型成员
  const LayerParameter& layer_param = layers_[layer_id]->layer_param();
  const int param_size = layer_param.param_size();
  string param_name =
      (param_size > param_id) ? layer_param.param(param_id).name() : "";
  if (param_name.size()) {
//vector<string> param_display_names_ 这里param_name获取的是PaParamSpec类型中的name成员,如果有name且非空,就把name压入该向量,否则就压入param_id  
    param_display_names_.push_back(param_name);
  } else {
    ostringstream param_display_name;
    param_display_name << param_id;
    param_display_names_.push_back(param_display_name.str());
  }
//params_,整个网络的参数blob。 不管这个参数有没有non-emty name,是否参与share!!!  
  const int net_param_id = params_.size(); //Append 参数blob 每一次循环,net_param_id和param_id_vecs_都会更新  
  params_.push_back(layers_[layer_id]->blobs()[param_id]);
//param_id_vecs_,存储的基本元素是net_param_id,每遍历一个参数blob,net_param_id和param_id_vecs_都会更新
  param_id_vecs_[layer_id].push_back(net_param_id);
//param_layer_indices_其元素为当layer_id 与当前param_id 组成的pair.vector<pair<int, int> > param_layer_indices_
  param_layer_indices_.push_back(make_pair(layer_id, param_id));
  if (!param_size || !param_name.size() || (param_name.size() &&
      param_names_index_.find(param_name) == param_names_index_.end())) {
    // This layer "owns" this parameter blob -- it is either anonymous
    // (i.e., not given a param_name) or explicitly given a name that we
    // haven't already seen.
/*param_owners_ 是一个存储parameter "onwer"的一个向量  ——> -1 表示当前Layer就是该parameter的"owner" ,
如果param_name不为空,而且能够在param_names_index_中找到,说明这个parameter已经存在于之前的某个或者某
些网络层里,说明这个parameter是共享于多个layer。 在caffe.proto的message ParamSpec里关于name的
注释——>To share a parameter between two layers, give it a (non-empty) name, 可见,如果一个parameter是
共享与多个网络层,那么它会有一个非空的name。
*/
    param_owners_.push_back(-1);
//添加param_name 
    if (param_name.size()) {
/*
map<string, int> param_names_index_是整个网络的参数non-empty name与index的映射。  注意,这个name是ParamSpec 类
型中的name,而且,""To share a parameter between two layers, give it a (non-empty) name"",所以说这个map中存
储的pair是<会被share的parameter_name, 其对应index> 
*/
      param_names_index_[param_name] = net_param_id;
/*
map<string, int> param_names_index_ 。虽然每一次循环,net_param_id都会更新,但
是net_param_id只有当param_name.size()>0时才会被压入向量param_names_index_ 
*/
    }
  } else {
    // Named param blob with name we've seen before: share params
//因为"To share a parameter between two layers, give it a (non-empty) name",所以这句代码就是获取shared parameter的"owner" net_param_id  
    const int owner_net_param_id = param_names_index_[param_name];
    param_owners_.push_back(owner_net_param_id);
/只获取了那些shared的parameter,即具有non-empty name的parameter的pair<layer_id, param_id>  
    const pair<int, int>& owner_index =
        param_layer_indices_[owner_net_param_id];
    const int owner_layer_id = owner_index.first;
    const int owner_param_id = owner_index.second;
    LOG(INFO) << "Sharing parameters '" << param_name << "' owned by "
              << "layer '" << layer_names_[owner_layer_id] << "', param "
              << "index " << owner_param_id;
//获取当前层的当前参数Blob  
    Blob<Dtype>* this_blob = layers_[layer_id]->blobs()[param_id].get();
//获取owner layer的对应的参数blob
    Blob<Dtype>* owner_blob =
        layers_[owner_layer_id]->blobs()[owner_param_id].get();
    const int param_size = layer_param.param_size();
    if (param_size > param_id && (layer_param.param(param_id).share_mode() ==
                                  ParamSpec_DimCheckMode_PERMISSIVE)) {
      // Permissive dimension checking -- only check counts are the same.
      CHECK_EQ(this_blob->count(), owner_blob->count())
          << "Shared parameter blobs must have the same count.";
    } else {
      // Strict dimension checking -- all dims must be the same.
      CHECK(this_blob->shape() == owner_blob->shape());
    }
    layers_[layer_id]->blobs()[param_id]->ShareData(
        *layers_[owner_layer_id]->blobs()[owner_param_id]);
  }
}
/*
功能:收集学习速率和权重衰减,即更新params_、params_lr_和params_weight_decay_
输入:无
输出:无
步骤:对每一层
1. 把当前层的所有blob存入params_中
params_// The parameters in the network
2. 如果有lr, 则把当前层的所有blob的lr存入params_lr_中; 否则, lr默认为1
3. 如果有 weight_decay,则把当前层的所有 blob 的 weight_decay存入 params_weight_decay_ 中
4. 否则,weight_decay 默认为1
*/
template <typename Dtype>
void Net<Dtype>::GetLearningRateAndWeightDecay() {
  LOG(INFO) << "Collecting Learning Rate and Weight Decay.";
  ParamSpec default_param_spec;
  for (int i = 0; i < layers_.size(); ++i) {
    vector<shared_ptr<Blob<Dtype> > >& layer_blobs = layers_[i]->blobs();
    for (int j = 0; j < layer_blobs.size(); ++j) {
      const ParamSpec* param_spec =
          (layers_[i]->layer_param().param_size() > j) ?
          &layers_[i]->layer_param().param(j) : &default_param_spec;
      params_lr_.push_back(param_spec->lr_mult());
      params_weight_decay_.push_back(param_spec->decay_mult());
    }
  }
}

template <typename Dtype>
Dtype Net<Dtype>::ForwardFromTo(int start, int end) {
  CHECK_GE(start, 0);
  CHECK_LT(end, layers_.size());
  Dtype loss = 0;
  if (debug_info_) {
    for (int i = 0; i < net_input_blobs_.size(); ++i) {
      InputDebugInfo(i);
    }
  }
  for (int i = start; i <= end; ++i) {
    // LOG(ERROR) << "Forwarding " << layer_names_[i];
    Dtype layer_loss = layers_[i]->Forward(bottom_vecs_[i], top_vecs_[i]);
    loss += layer_loss;
    if (debug_info_) { ForwardDebugInfo(i); }
  }

#ifdef USE_CUDNN
  if (Caffe::mode() == Caffe::GPU)
    CuDNNConvolutionLayer<Dtype>::RuntimeOptimize(1000);
#endif
  return loss;
}

template <typename Dtype>
Dtype Net<Dtype>::ForwardFrom(int start) {
  return ForwardFromTo(start, layers_.size() - 1);
}

template <typename Dtype>
Dtype Net<Dtype>::ForwardTo(int end) {
  return ForwardFromTo(0, end);
}
/*
功能:前馈预先填满,即预先进行一次前馈
输入:Dtype* loss
输出:net_output_blobs_,前馈后的输出层blob:vector
*/
template <typename Dtype>
const vector<Blob<Dtype>*>& Net<Dtype>::ForwardPrefilled(Dtype* loss) {
  if (loss != NULL) {
    *loss = ForwardFromTo(0, layers_.size() - 1);
  } else {
    ForwardFromTo(0, layers_.size() - 1);
  }
  return net_output_blobs_;
}
/*
功能:把网络输入层的blob读到net_input_blobs_,然后进行前馈,计算出loss
输入:整个网络输入层的blob
输出:整个网络输出层的blob
*/
template <typename Dtype>
const vector<Blob<Dtype>*>& Net<Dtype>::Forward(
    const vector<Blob<Dtype>*> & bottom, Dtype* loss) {
  // Copy bottom to internal bottom
  for (int i = 0; i < bottom.size(); ++i) {
    net_input_blobs_[i]->CopyFrom(*bottom[i]);
  }
  return ForwardPrefilled(loss);
}
/*
功能:Forward的重载,只是输入层的blob以string的格式传入
*/
template <typename Dtype>
string Net<Dtype>::Forward(const string& input_blob_protos, Dtype* loss) {
  BlobProtoVector blob_proto_vec;
  if (net_input_blobs_.size()) {
    blob_proto_vec.ParseFromString(input_blob_protos);
    CHECK_EQ(blob_proto_vec.blobs_size(), net_input_blobs_.size())
        << "Incorrect input size.";
    for (int i = 0; i < blob_proto_vec.blobs_size(); ++i) {
      net_input_blobs_[i]->FromProto(blob_proto_vec.blobs(i));
    }
  }
  ForwardPrefilled(loss);
  blob_proto_vec.Clear();
  for (int i = 0; i < net_output_blobs_.size(); ++i) {
    net_output_blobs_[i]->ToProto(blob_proto_vec.add_blobs());
  }
  string output;
  blob_proto_vec.SerializeToString(&output);
  return output;
}

template <typename Dtype>
void Net<Dtype>::BackwardFromTo(int start, int end) {
  CHECK_GE(end, 0);
  CHECK_LT(start, layers_.size());

  for (int i = start; i >= end; --i) {
    if (layer_need_backward_[i]) {
      layers_[i]->Backward(
          top_vecs_[i], bottom_need_backward_[i], bottom_vecs_[i]);
      if (debug_info_) { BackwardDebugInfo(i); }

#ifdef USE_MPI
      if ((Caffe::parallel_mode() == Caffe::MPI) && (Caffe::remaining_sub_iter() == 0)) {
        for (int n = 0; n < param_layer_indices_.size(); ++n) {
          bool ready_for_sync = false;

          //decide whether we need to sync the gradient of this blob
          if ((param_layer_indices_[n].first == i)) {
            if (param_owners_[n] == -1) {
              ready_for_sync = true;
            } else {
              // this blob is a shared one, we need to make sure no more gradients will be
              // accumulated to it before transmission
              int owner_id = param_owners_[n];
              ready_for_sync = true;
              for (int m = n - 1; m >= 0; --m) {
                if ((param_owners_[m] == owner_id) && (param_layer_indices_[m].first >= end)) {
                  // there are still layers holding this shared blob,
                  // not secure the do the transmission
                  ready_for_sync = false;
                  break;
                }
              }
            }
          }
          //sync gradient
          if (ready_for_sync && layers_[i]->need_sync())
            caffe_iallreduce(
                this->params_[n]->mutable_cpu_diff(),
                this->params_[n]->count()
            );
        }
      }
#endif //USE_MPI

    }
  }
}

template <typename Dtype>
void Net<Dtype>::InputDebugInfo(const int input_id) {
  const Blob<Dtype>& blob = *net_input_blobs_[input_id];
  const string& blob_name = blob_names_[net_input_blob_indices_[input_id]];
  const Dtype data_abs_val_mean = blob.asum_data() / blob.count();
  LOG(INFO) << "    [Forward] "
     << "Input " << blob_name << " data: " << data_abs_val_mean;
}

template <typename Dtype>
void Net<Dtype>::ForwardDebugInfo(const int layer_id) {
  for (int top_id = 0; top_id < top_vecs_[layer_id].size(); ++top_id) {
    const Blob<Dtype>& blob = *top_vecs_[layer_id][top_id];
    const string& blob_name = blob_names_[top_id_vecs_[layer_id][top_id]];
    const Dtype data_abs_val_mean = blob.asum_data() / blob.count();
    LOG(INFO) << "    [Forward] "
       << "Layer " << layer_names_[layer_id] << ", top blob " << blob_name
       << " data: " << data_abs_val_mean;
  }
  for (int param_id = 0; param_id < layers_[layer_id]->blobs().size();
       ++param_id) {
    const Blob<Dtype>& blob = *layers_[layer_id]->blobs()[param_id];
    const int net_param_id = param_id_vecs_[layer_id][param_id];
    const string& blob_name = param_display_names_[net_param_id];
    const Dtype data_abs_val_mean = blob.asum_data() / blob.count();
    LOG(INFO) << "    [Forward] "
       << "Layer " << layer_names_[layer_id] << ", param blob " << blob_name
       << " data: " << data_abs_val_mean;
  }
}

template <typename Dtype>
void Net<Dtype>::BackwardDebugInfo(const int layer_id) {
  const vector<Blob<Dtype>*>& bottom_vec = bottom_vecs_[layer_id];
  for (int bottom_id = 0; bottom_id < bottom_vec.size(); ++bottom_id) {
    if (!bottom_need_backward_[layer_id][bottom_id]) { continue; }
    const Blob<Dtype>& blob = *bottom_vec[bottom_id];
    const string& blob_name = blob_names_[bottom_id_vecs_[layer_id][bottom_id]];
    const Dtype diff_abs_val_mean = blob.asum_diff() / blob.count();
    LOG(INFO) << "    [Backward] "
        << "Layer " << layer_names_[layer_id] << ", bottom blob " << blob_name
        << " diff: " << diff_abs_val_mean;
  }
  for (int param_id = 0; param_id < layers_[layer_id]->blobs().size();
       ++param_id) {
    if (!layers_[layer_id]->param_propagate_down(param_id)) { continue; }
    const Blob<Dtype>& blob = *layers_[layer_id]->blobs()[param_id];
    const Dtype diff_abs_val_mean = blob.asum_diff() / blob.count();
    LOG(INFO) << "    [Backward] "
        << "Layer " << layer_names_[layer_id] << ", param blob " << param_id
        << " diff: " << diff_abs_val_mean;
  }
}

template <typename Dtype>
void Net<Dtype>::UpdateDebugInfo(const int param_id) {
  const Blob<Dtype>& blob = *params_[param_id];
  const int param_owner = param_owners_[param_id];
  const string& layer_name = layer_names_[param_layer_indices_[param_id].first];
  const string& param_display_name = param_display_names_[param_id];
  const Dtype diff_abs_val_mean = blob.asum_diff() / blob.count();
  if (param_owner < 0) {
    const Dtype data_abs_val_mean = blob.asum_data() / blob.count();
    LOG(INFO) << "    [Update] Layer " << layer_name
        << ", param " << param_display_name
        << " data: " << data_abs_val_mean << "; diff: " << diff_abs_val_mean;
  } else {
    const string& owner_layer_name =
        layer_names_[param_layer_indices_[param_owner].first];
    LOG(INFO) << "    [Update] Layer " << layer_name
        << ", param blob " << param_display_name
        << " (owned by layer " << owner_layer_name << ", "
        << "param " << param_display_names_[param_owners_[param_id]] << ")"
        << " diff: " << diff_abs_val_mean;
  }
}
/*
功能:从Other网络复制某些层
步骤:对Other网络的第i层(源层):
1. 定义一个Layer的指针指向第i层
2. 读取第i层(源层)的名字
3. 找通过名字来找目标层如果没找到,即target_layer_id == layer_names_.size()则忽略Other的第i层,即Other的第i层不需要share给网络
4. 如果找到了,即other的第i层需要share给网络,则把目标层的所有blob读到target_blobs中
    1判断目标层和源层的blob数量是否相等
    2判断每个blob大小是否相等
    3调用ShareData函数把源层的blob赋给目标层的blob

*/
template <typename Dtype>
void Net<Dtype>::ShareTrainedLayersWith(const Net* other) {
  int num_source_layers = other->layers().size();
  for (int i = 0; i < num_source_layers; ++i) {
    Layer<Dtype>* source_layer = other->layers()[i].get();
    const string& source_layer_name = other->layer_names()[i];
    int target_layer_id = 0;
    while (target_layer_id != layer_names_.size() &&
        layer_names_[target_layer_id] != source_layer_name) {
      ++target_layer_id;
    }
    if (target_layer_id == layer_names_.size()) {
      DLOG(INFO) << "Ignoring source layer " << source_layer_name;
      continue;
    }
    DLOG(INFO) << "Copying source layer " << source_layer_name;
    vector<shared_ptr<Blob<Dtype> > >& target_blobs =
        layers_[target_layer_id]->blobs();
    CHECK_EQ(target_blobs.size(), source_layer->blobs().size())
        << "Incompatible number of blobs for layer " << source_layer_name;
    for (int j = 0; j < target_blobs.size(); ++j) {
      Blob<Dtype>* source_blob = source_layer->blobs()[j].get();
      CHECK(target_blobs[j]->shape() == source_blob->shape());
      target_blobs[j]->ShareData(*source_blob);
    }
  }
}

template <typename Dtype>
void Net<Dtype>::BackwardFrom(int start) {
  BackwardFromTo(start, 0);
}

template <typename Dtype>
void Net<Dtype>::BackwardTo(int end) {
  BackwardFromTo(layers_.size() - 1, end);
}
/*
功能:对整个网络进行反向传播
*/
template <typename Dtype>
void Net<Dtype>::Backward() {
  BackwardFromTo(layers_.size() - 1, 0);
  if (debug_info_) {
    Dtype asum_data = 0, asum_diff = 0, sumsq_data = 0, sumsq_diff = 0;
    for (int i = 0; i < params_.size(); ++i) {
      if (param_owners_[i] >= 0) { continue; }
      asum_data += params_[i]->asum_data();
      asum_diff += params_[i]->asum_diff();
      sumsq_data += params_[i]->sumsq_data();
      sumsq_diff += params_[i]->sumsq_diff();
    }
    const Dtype l2norm_data = std::sqrt(sumsq_data);
    const Dtype l2norm_diff = std::sqrt(sumsq_diff);
    LOG(ERROR) << "    [Backward] All net params (data, diff): "
        << "L1 norm = (" << asum_data << ", " << asum_diff << "); "
        << "L2 norm = (" << l2norm_data << ", " << l2norm_diff << ")";
  }
}

template <typename Dtype>
void Net<Dtype>::Reshape() {
  for (int i = 0; i < layers_.size(); ++i) {
    layers_[i]->Reshape(bottom_vecs_[i], top_vecs_[i]);
  }

#ifdef USE_CUDNN
  if (Caffe::mode() == Caffe::GPU)
    CuDNNConvolutionLayer<Dtype>::RuntimeOptimize(1000);
#endif
}
/*
功能:和ShareTrainedLayersWith一样
步骤:不同的是调用FromProto函数把源层的blob赋给目标层的blob
*/
template <typename Dtype>
void Net<Dtype>::CopyTrainedLayersFrom(const NetParameter& param) {
  int num_source_layers = param.layer_size();
  for (int i = 0; i < num_source_layers; ++i) {
    const LayerParameter& source_layer = param.layer(i);
    const string& source_layer_name = source_layer.name();
    int target_layer_id = 0;
    while (target_layer_id != layer_names_.size() &&
        layer_names_[target_layer_id] != source_layer_name) {
      ++target_layer_id;
    }
    if (target_layer_id == layer_names_.size()) {
      DLOG(INFO) << "Ignoring source layer " << source_layer_name;
      continue;
    }
    DLOG(INFO) << "Copying source layer " << source_layer_name;
    vector<shared_ptr<Blob<Dtype> > >& target_blobs =
        layers_[target_layer_id]->blobs();
    CHECK_EQ(target_blobs.size(), source_layer.blobs_size())
        << "Incompatible number of blobs for layer " << source_layer_name;
    for (int j = 0; j < target_blobs.size(); ++j) {
      const bool kReshape = false;
      target_blobs[j]->FromProto(source_layer.blobs(j), kReshape);
    }
  }
}
/*
功能:从文件中读入NetParameter param,然后调用CopyTrainedLayersFrom()
*/
template <typename Dtype>
void Net<Dtype>::CopyTrainedLayersFrom(const string trained_filename) {
  NetParameter param;
  ReadNetParamsFromBinaryFileOrDie(trained_filename, ¶m);
  CopyTrainedLayersFrom(param);
}
/*
功能:把网络的参数存入prototxt中
步骤:
1. 设置网络的名字:param->set_name(name_)
2. 加入输入层blob的名字
3. 对于第i层:
    1加入bottom的blob的名字
    2加入top的blob的名字
    3写到proto中

*/
template <typename Dtype>
void Net<Dtype>::ToProto(NetParameter* param, bool write_diff) const {
  param->Clear();
  param->set_name(name_);
  // Add bottom and top
  for (int i = 0; i < net_input_blob_indices_.size(); ++i) {
    param->add_input(blob_names_[net_input_blob_indices_[i]]);
  }
  DLOG(INFO) << "Serializing " << layers_.size() << " layers";
  for (int i = 0; i < layers_.size(); ++i) {
    LayerParameter* layer_param = param->add_layer();
//bottom_id_vecs_存储整个网络所有网络层的bottom blob的ID
    for (int j = 0; j < bottom_id_vecs_[i].size(); ++j) {
      layer_param->add_bottom(blob_names_[bottom_id_vecs_[i][j]]);
    }
    for (int j = 0; j < top_id_vecs_[i].size(); ++j) {
      layer_param->add_top(blob_names_[top_id_vecs_[i][j]]);
    }
    layers_[i]->ToProto(layer_param, write_diff);
  }
}
/*
功能:更新params_中blob的值
*/
template <typename Dtype>
void Net<Dtype>::Update() {
  // First, accumulate the diffs of any shared parameters into their owner's
  // diff. (Assumes that the learning rate, weight decay, etc. have already been
  // accounted for in the current diff.)
  for (int i = 0; i < params_.size(); ++i) {
    if (param_owners_[i] < 0) { continue; }
    if (debug_info_) { UpdateDebugInfo(i); }
    const int count = params_[i]->count();
    const Dtype* this_diff;
    Dtype* owner_diff;
    switch (Caffe::mode()) {
    case Caffe::CPU:
      this_diff = params_[i]->cpu_diff();
      owner_diff = params_[param_owners_[i]]->mutable_cpu_diff();
      caffe_add(count, this_diff, owner_diff, owner_diff);
      break;
    case Caffe::GPU:
#ifndef CPU_ONLY
      this_diff = params_[i]->gpu_diff();
      owner_diff = params_[param_owners_[i]]->mutable_gpu_diff();
      caffe_gpu_add(count, this_diff, owner_diff, owner_diff);
#else
      NO_GPU;
#endif
      break;
    default:
      LOG(FATAL) << "Unknown caffe mode: " << Caffe::mode();
    }
  }
  // Now, update the owned parameters.
  for (int i = 0; i < params_.size(); ++i) {
    if (param_owners_[i] >= 0) { continue; }
    if (debug_info_) { UpdateDebugInfo(i); }
    params_[i]->Update();
  }
}
/*
功能:判断是否存在名字为blob_name的blob
*/
template <typename Dtype>
bool Net<Dtype>::has_blob(const string& blob_name) const {
  return blob_names_index_.find(blob_name) != blob_names_index_.end();
}
/*
功能:给一个blob的名字,返回这个blob的指针
*/
template <typename Dtype>
const shared_ptr<Blob<Dtype> > Net<Dtype>::blob_by_name(
    const string& blob_name) const {
  shared_ptr<Blob<Dtype> > blob_ptr;
  if (has_blob(blob_name)) {
    blob_ptr = blobs_[blob_names_index_.find(blob_name)->second];
  } else {
    blob_ptr.reset((Blob<Dtype>*)(NULL));
    LOG(WARNING) << "Unknown blob name " << blob_name;
  }
  return blob_ptr;
}
/*
功能:判断是否存在名字为layer_name的layer
*/
template <typename Dtype>
bool Net<Dtype>::has_layer(const string& layer_name) const {
  return layer_names_index_.find(layer_name) != layer_names_index_.end();
}

/*
功能:给一个layer的名字,返回这个layer的指针
*/
template <typename Dtype>
const shared_ptr<Layer<Dtype> > Net<Dtype>::layer_by_name(
    const string& layer_name) const {
  shared_ptr<Layer<Dtype> > layer_ptr;
  if (has_layer(layer_name)) {
    layer_ptr = layers_[layer_names_index_.find(layer_name)->second];
  } else {
    layer_ptr.reset((Layer<Dtype>*)(NULL));
    LOG(WARNING) << "Unknown layer name " << layer_name;
  }
  return layer_ptr;
}

INSTANTIATE_CLASS(Net);

}  // namespace caffe
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值