树分类、线性回归和树回归的感性认知

假设一个数据集:

  • 样本:n个人
  • 特征:m个特征(体重、身高等)
  • 类别:男,女
  • 预测值:健康系数(范围0~100)

分类的目的:把n个人分成男,女两堆(二分类)

分类

  • 决策树
    多次二分类。假设在某次分类中选用体重作为分类特征,50kg作为阈值,那么大于50kg的人进入左子树,其余人进入右子树。对于每棵子树的人,继续选用剩下特征进行分类直到满足停止条件,最后每个叶结点的类别由该结点下所有样本中的多数类决定。

  • 逻辑回归
    发给每个人一个卡片,卡片上有m个数字,对应m个特征。每个人将特征值和对应的数字相乘再求和得到一个数值,这个值经过sigmoid函数过滤,大于0.5分类为男,否者为女。(这n个人的卡片数字都是一样的,他们在同一个逻辑回归模型下)

回归

  • 线性回归
    现在告诉每个人一个健康系数,作为回归要预测的值。同样发给每个人一张卡片,每个人将特征值和对应的数字相乘再求和得到的数值,作为对健康系数的预测值。(这n个人的卡片上数字都是一样的,他们在同一个线性回归模型下)

  • 回归树
    同样告诉每个人一个健康系数。同决策树,先做多次二分类,最后每个叶结点对应的不再是类别,而是该结点下所有样本的健康系数均值,作为对这些样本健康系数的预测。

  • 模型树
    告诉每个人健康系数,同时还发给他们卡片。同决策树,多次二分类后,叶结点对应的是一个卡片,这个卡片上的m个数字是由结点下所有样本决定的(这n个人的卡片数字不都是一样的,只有同一个叶结点下的人拿到的卡片数字一样)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值