Joinpoint 回归模型简介
Joinpoint 回归模型是一种统计方法,用于分析时间序列数据中趋势的变化。它通过识别数据中的“连接点”(joinpoints),将时间序列分成若干个线性片段,每个片段具有不同的斜率。这使得我们能够更精确地描述趋势在不同时间段内的变化情况。
- APC (Annual Percent Change):
指的是在 某个时间段内,趋势变化的百分比。在 Joinpoint 模型中,每个线性片段都有一个 APC,表示该片段内趋势的增长或下降速度。
- AAPC (Average Annual Percent Change):
指的是在 整个研究期间,趋势变化的平均百分比。AAPC 是对所有 APC 的加权平均,能够更全面地反映总体趋势。
文章代码解析 (Joinpoint 计算 APC 和 AAPC)
文章中提供了使用 GlobalBurdenR
包进行 Joinpoint 分析的代码。以下是对代码的详细解析,重点关注 APC 和 AAPC 的计算。
gbd_joinpoint_analysis_NIH 函数是 GlobalBurdenR
包中用于执行 Joinpoint 回归分析的核心函数。它封装了复杂的统计计算过程,采用joinpoint官方的命令行工具,并提供了易于使用的接口,分析速度更快。让我们深入了解一下这个函数是如何计算 APC 和 AAPC 的。
首先对数据进行筛选:
data2=gbd_filter(data,measure=='Incidence',age=='Age-standardized',metric == "Rate",
location %in% c('China','Viet Nam'))
然后,计算标准误差(