如何进行GBD数据库的前沿分析 Frontier analysis(GBD系列第七集)

GBD数据库前沿分析(Frontier analysis)的主要目的是评估某种负担与社会人口发展之间的关系,特别是通过社会人口指数(SDI)来识别不同国家或地区在降低疾病负担方面的潜在改进空间。

通过使用前沿分析,研究确定了基于SDI的最低可实现的年龄标准化DALYs(伤残调整生命年)率,为政策制定和资源分配提供科学依据。统计方法如数据包络分析、自举样本和LOESS回归被用于计算实际值与前沿值之间的差异,并考虑不确定性,从而帮助识别优化资源配置和改善健康结果的机会。

接下来我们将使用GlobalburdenR工具中函数实现数据的前沿分析

1.首先我们去加载数据

# 加载必要的包library(dplyr)library(data.table)library(purrr)library(tidyr)library(ggplot2)library(ggrepel)library(dplyr)library(progress)setwd('X:/GBD数据库示例数据/')# 读取数据case <- read.csv('frontier.csv', header = T)

data('SDI2021')#SDI数据

results <- frontier_analysis(case, SDI,                            year1 = 1990,    # 第一个年份                            year2 = 2019,    # 第二个年份                            age = 'Age-standardized',                            metric = 'Rate',                            sex = 'Both',                            measure = 'DALYs (Disability-Adjusted Life Years)')# 提取结果data <- result[[1]]            # 所有年份的完整数据data_1990 <- result[[2]] # 1990 年的数据data_2019 <- result[[3]]# 2019 年的数据data_2019$trend <- ifelse(data_2019$ASR > data_1990$ASR, "Increase", "Decrease")# 绘图res = plot_frontier(data, data_2019)res$plotAres$plotB

其中的曲线就是前沿线,点是不同的国家,X轴是SDI,Y轴是标准化率,离前沿线越近证明该地区或者国家对于疾病的控制较好,如果距离越远证明对于疾病的控制还有很多进步空间。

在R语言中,GBD(全球疾病负担)数据库通常包含大量的统计信息,包括发病率、死亡率等健康指标及其不确定性范围。要计算95%的不确定性区间(即95%的不确定度上限和下限),可以利用R提供的统计函数和包来进行。 首先,你需要安装并加载必要的包,如`tidyverse`(用于数据操作和可视化)和`dplyr`(数据处理): ```R install.packages("tidyverse") # 如果未安装 library(tidyverse) library(dplyr) ``` 然后,假设你已经有了GBD数据库数据框`gbd_data`,其中含有需要分析的变量。如果你的数据集是以CSV或其他格式导入,记得先读取进来: ```R gbd_data <- read_csv("your_gbd_database.csv") ``` 接下来,你可以使用`mutate()`函数创建新的列来表示95%的不确定性界限(UI),这通常基于置信区间的计算。例如,如果不确定性是由标准误差给出的,可以用正态分布的标准差乘以z值(对于95%置信水平,z值约为1.96)来计算: ```R gbd_data <- gbd_data %>% mutate(upper_95_ui = mean + 1.96 * std.error, lower_95_ui = mean - 1.96 * std.error) ``` 这里的`mean`代表平均值,`std.error`代表标准误差。这将为你提供每个指标95% UI的上下限。 请注意,实际的计算可能会更复杂,取决于GBD数据库的具体结构和不确定性信息的来源。上述步骤是一个基本的示例,并假设不确定性通过均值和标准误差直接给出。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值