一篇文章带你从零开始学习GBD数据库分析?(GBD系列第一集)

全球疾病负担数据库(Global Burden of Disease,简称GBD)是当今流行病学研究中最重要的数据来源之一。它通过系统化的测量和分析,揭示了全球范围内疾病、伤害和风险因素对健康的影响。GBD数据库被广泛应用于SCI论文中,为公共卫生政策、医疗资源分配和健康干预措施提供科学支持。那么,GBD数据库相关的SCI论文一般会涉及哪些内容?本文将带你一探究竟。

总体来说,GBD数据的数据本身就是一系列的时间序列数据,其数据总共只有10个左右的变量,GBD数据库包含的变量有:measure(测量指标)、location(位置)、sex(性别)、age(年龄组)、cause(病因)、metric(指标单位)、year(年份)、val(值)、upper(可信区间上限)和lower(可信区间下限)。

也就是说GBD数据本质就是各种疾病统计出来的时间序列数据。

那么GBD的SCI论文中常见的分析有那些内,下图做了简单的总结:

具体来说有以下内容:

  • 描述统计:对疾病发病率、患病率、死亡率及DALYs进行现阶段的描述统计,常用指标包括ASIR(年龄标准化发病率)、ASDR(年龄标准化死亡率)和ASPR(年龄标准化患病率)。

  • 变化趋势分析:分析疾病发病率、患病率、死亡率及DALYs的变化趋势,计算变化率指标(如EAPC、APC、AAPC),采用方法包括joinpoint分析等。

  • 未来趋势预测:对疾病发病率、患病率、死亡率等未来趋势进行预测,采用时间序列分析方法,如BAPC(贝叶斯年龄周期队列分析)和ARIMA模型。

  • 年龄-时期-队列(APC)分析:通过APC流行病学模型分析时间序列数据的变化原因,解释年龄效应、时间效应和队列效应。

  • 分解分析(Decomposition Analysis):解释率的变化来源,包括老龄化、人口因素和生物学因素等。

  • 前沿分析(Frontier Analysis):衡量各国家社会发展指数(SDI)与疾病控制情况的关系。

  • 数据可视化:通过各种描述性图形展示数据,便于解读与传播。

常见的结果和绘图如下内容:

统计的两年对比EAPC表格:

发病率、患病率、死亡率的世界地图:

jointpoint回归计算APC、AAPC

未来趋势预测一般是ARIMA模型和BAPC模型,当然也有其他的时间序列预测模型:

年龄-时期-队列(APC)分析。这个分析其实和分解分析一样,都是一种解释性分析,用来将率的变化分解成各种因素:

分解分析(Decomposition Analysis):解释率的变化来源,包括老龄化、人口因素和生物学因素等:

前沿分析(Frontier Analysis):衡量各国家社会发展指数(SDI)与疾病控制情况的关系。

除了之外还有各类高级的数据可视化图形,这个就不在一一介绍。那么该怎么开始学习,首先这里必须要知道的就是GBD各种数据库的概念和指标,这个我们就放在下篇文件进行介绍。

如果您对GBD数据分析感兴趣,可以联系,获取最新的分析流程的分析方法,可添加下方联系方式:

### GBD 数据库在机器学习中的应用 全球疾病负担研究(Global Burden of Disease, GBD)是一个全面的流行病学项目,提供了有关健康状况、风险因素和医疗干预措施的数据。这些数据可以用于多种目的,包括但不限于政策制定和支持科学研究。 #### 应用场景 1. **预测模型开发** 使用GBD数据库中的历史发病率、死亡率和其他相关统计数据来训练机器学习算法,从而建立预测未来趋势或识别潜在高危人群的模型。例如,可以通过分析特定地区过去几年的心血管疾病的患病情况及其影响因子,利用逻辑回归等统计方法构建预测模型[^4]。 2. **特征工程与选择** 对于任何给定的目标变量,在准备输入到机器学习模型之前都需要经过精心挑选和转换的过程——即所谓的“特征工程”。GBD提供的详尽维度允许研究人员探索不同的组合方式以找到最能解释现象变化的关键属性。比如,在处理慢性阻塞性肺部疾病(COPD)时,可以从环境暴露水平(如空气污染指数)和社会经济状态等多个角度出发选取合适的特征集。 3. **因果推理** 借助先进的计算工具和技术手段,如Joinpoint回归分析,可以直接通过编程接口调用专门设计好的程序包完成复杂运算任务,进而揭示隐藏在其背后的因果关系模式。这有助于理解某些行为习惯或者外部条件对于公众健康的长期效应是如何体现出来的[^3]。 4. **公共健康管理决策支持** 当涉及到大规模人口层面的问题解决策略规划方面,则更加依赖于高质量的信息支撑体系。借助于GBD所提供的广泛而深入的知识图谱,能够帮助政府机构及其他利益攸关方做出更为明智合理的资源配置决定,同时也促进了跨部门协作机制的有效运行。 ```python import pandas as pd from sklearn.model_selection import train_test_split from sklearn.linear_model import LogisticRegression from sklearn.metrics import accuracy_score # 加载并预处理GBD数据 data = pd.read_csv('gbd_data.csv') X = data[['risk_factor_1', 'risk_factor_2']] # 特征列 y = data['outcome'] # 结果标签 # 划分训练集测试集 X_train, X_test, y_train, y_test = train_test_split(X, y) # 训练逻辑回归模型 model = LogisticRegression() model.fit(X_train, y_train) # 预测及评估性能 predictions = model.predict(X_test) print(f'Accuracy: {accuracy_score(y_test, predictions)}') ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值