由这张图我们粗略的了解插值和拟合:下面正式介绍。
一维插值
一维插值就是在已知互不相同的观测点除的函数值:寻找一个近似函数
使得
,也就是这个函数的曲线要通过所有观测点。这样我们就能观测
在非观测点
之外的点的函数值。
称为插值函数,含
(i=0,1,,,n)的最小区间[a,b]称作插值区间,
称作插值点。
注意:插值方法一般用于插值区间内部点的函数值估计或者预测,当大于预测区间时,通常我们也可以进行短期的预测,对于中长区是不可取的。这也就告诉我们插值方法可以对数据中缺失的数据进行填补。
多项式插值
(i=0,1,2,,n),这个插值条件式子共有
个约束方程,而n次多项式也恰好有n+1个待定系数法。如果已知这些函数点以及函数值,我们可以确定一个次数不超过n的多项式。
,这个多项式满足
。
对于上面多项式系数通常可以用三种方法;待定系数法,拉格朗日插值,牛顿插值。
这里我们介绍前两种方法,因为根据克莱姆法则方程的解唯一,所以三种插值方法的计算结果相同,掌握一种即可。
待定系数法
将已知的函数点和函数值代入多项式中:得到
我们将其写成矩阵的形式: