python插值与拟合

kl

 由这张图我们粗略的了解插值和拟合:下面正式介绍。

一维插值

一维插值就是在已知互不相同的观测点x_{0}<x_{1}<x_{2}<...<x_{n}除的函数值:寻找一个近似函数f(x)使得f(x_{i})=y_{i},也就是这个函数的曲线要通过所有观测点。这样我们就能观测x^{\hat{}}在非观测点x_{0}<x_{1}<x_{2}<...<x_{n}之外的点的函数值。

f(x)称为插值函数,含x_{i}(i=0,1,,,n)的最小区间[a,b]称作插值区间,x^{\hat{}}称作插值点。

注意:插值方法一般用于插值区间内部点的函数值估计或者预测,当大于预测区间时,通常我们也可以进行短期的预测,对于中长区是不可取的。这也就告诉我们插值方法可以对数据中缺失的数据进行填补

多项式插值

f(x_{i})=y_{i}(i=0,1,2,,n),这个插值条件式子共有n+1个约束方程,而n次多项式也恰好有n+1个待定系数法。如果已知这些函数点以及函数值,我们可以确定一个次数不超过n的多项式。

P_{n}=a_{n}x^{n}+a_{n-1}x^{n-1}+....+a_{1}x+a_{0},这个多项式满足P_{n}=f(x_{i})=y_{i}

对于上面多项式系数通常可以用三种方法;待定系数法,拉格朗日插值,牛顿插值。

这里我们介绍前两种方法,因为根据克莱姆法则方程的解唯一,所以三种插值方法的计算结果相同,掌握一种即可。

待定系数法

将已知的函数点和函数值代入多项式中:得到

\left\{\begin{matrix} a_{n}x^{n}_{0}+a_{n-1}x^{n-1}_{0}+....+a_{1}x_{0}+a_{0}= y_{0}& & & \\ a_{n}x^{n}_{1}+a_{n-1}x^{n-1}_{1}+....+a_{1}x_{1}+a_{0}= y_{0} & & & \\ ..... & & & \\ a_{n}x^{n}_{n}+a_{n-1}x^{n-1}_{n}+....+a_{1}x_{n}+a_{0}= y_{n}\end{matrix}\right.

我们将其写成矩阵的形式:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

first青年危机

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值