android studio perfected Plugins share!!!

本文介绍了几款能够显著提高Android开发效率的AndroidStudio插件,包括AndroidSelectorChapek、ADBIDEA和Prettify等。这些插件不仅能够帮助开发者自动生成selector文件、快速调用ADB命令,还能美化布局文件并自动生成findViewById代码。

这里分享几个android studio插件,绝对提升开发逼格:

AndroidSelectorChapek
  • androidSelectorChapek—github
    安装方法:
    1:Android studio ->Preferences→Plugins→Browse repositories 选择SelectorChapek。
    2: 本地下载, 安装方法Preferences→Plugins→Install plugin from disk。

    安装插件成功之后,选择几张图片放在drawable-hdpi或者drawable-xhdpi下点击右键选择generate android selectors
    这里写图片描述
    在drawable folder里面自动会生成selector文件 如下:
    这里写图片描述

    这里写图片描述

    这里有个地方要注意图片的后缀需要规范具体的规范如下:
    这里写图片描述
    还有一点就是图片的前缀一定要相同否则生成不了图片如上例:
    这里写图片描述

ADB IDEA

ADB IDEA—github

功能概要:一键弹出ADB命令,再也不要敲那些恶心的ADB命令了(当然基本的ADB命令你还是得记住,这个只是为了偷懒而偷懒!-))
安装插件方法同楼上:
安装完之后具体使用如下一般有两种,具体如下:
1:全局搜索(double shift):
这里写图片描述

2:Tools->Android->ADB Idea
这里写图片描述

装完之后,瞬间提升逼格。

Prettify

这个绝对是好东西,看下布局文件:

<?xml version="1.0" encoding="utf-8"?>
<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
    android:layout_width="match_parent"
    android:layout_height="match_parent">

    <Button
        android:id="@+id/button1"
        android:layout_width="wrap_content"
        android:layout_height="wrap_content"
        android:text="button1" />

    <Button
        android:id="@+id/button2"
        android:layout_width="wrap_content"
        android:layout_height="wrap_content"
        android:layout_below="@id/button1"
        android:text="button2" />

    <Button
        android:id="@+id/button3"
        android:layout_width="wrap_content"
        android:layout_height="wrap_content"
        android:layout_below="@id/button2"
        android:text="button3" />

    <TextView
        android:id="@+id/textview1"
        android:layout_width="wrap_content"
        android:layout_height="wrap_content"
        android:layout_below="@id/button3"
        android:text="textview1" />

    <TextView
        android:id="@+id/textview2"
        android:layout_width="wrap_content"
        android:layout_height="wrap_content"
        android:layout_below="@id/textview1"
        android:text="textview2" />

    <TextView
        android:id="@+id/textview3"
        android:layout_width="wrap_content"
        android:layout_height="wrap_content"
        android:layout_below="@id/textview2"
        android:text="textview3" />
</RelativeLayout>

装完之后看下图演示,好爽有没有:
这里写图片描述

自动生成findViewById,再也不用敲击这些恶心代码了。

后续会持续更新。

这里写图片描述

\section{Introduction}\label{sec1} Emotion is an internal subjective experience. However, when it occurs, it is always accompanied by some external presentations. Moreover, the external displays related to emotions are called expressions. Expressions can be categorised into three main types: facial, gestural and intonational. Motivational differentiation theorists of contemporary emotions, such as Tompkins (1970) and Izard (1978), have emphasized that facial expressions uniquely convey emotions due to the highly sensitive receptors on the face. In the 1970s, the renowned international psychologists Ekman and Friesen (1971) classified the facial expressions of the human face into six fundamental emotions, categories: happiness, fear, surprise, sadness, anger, and disgust. Subsequently, they (1978) further refined and perfected facial expressions by developing the Facial Action Coding System (FACS). The development of computer technology has facilitated the gradual evolution of facial expression recognition technology (Mase, 1991; Porter & Ten, 2008). This technology is now employed in a few fields, including psychology, intelligent robotics, intelligent surveillance, virtual reality, and synthetic animation. There has been a growing focus on research in face recognition technology, especially facial expression recognition. As Luo et al. (2012) defined, facial component segmentation is a cross-modal data transformation problem, and the parsing of partially occluded facial images is achieved effectively. The spatial transformation network assisted interconnected convolutional neural network framework proposed by Yin et al. (2021) has improved the accuracy of face parsing through end-to-end training and has strong generalisation ability. Convolutional neural networks have been shown to enhance the accuracy of emotion detection in real-world scenarios (Koodalsamy et al., 2023; Zhang et al., 2024). \begin{align} D_\mu &= \partial_\mu - ig \frac{\lambda^a}{2} A^a_\mu \nonumber \\ F^a_{\mu\nu} &= \partial_\mu A^a_\nu - \partial_\nu A^a_\mu + g f^{abc} A^b_\mu A^a_\nu \label{eq2} \end{align}} Emotion, affect, and cognition are inextricably linked in human mental activity (Markus & Kitayama, 1991). The field of psychology of Affect has identified that emotions are the process of reflecting feelings, which is a process of brain activity that is situational and temporary. Conversely, Affect are the content of feelings, namely experience and impressions, which are stable and enduring. Emotions are expressions of Affect, and at the same time, Affect influence the expressions and changes of emotions. Whilst traditional affective computing has focused predominantly on basic emotion recognition, the Control Value Theory (CVT) proposed by Pekrun provides a new dimension for understanding affective dynamics in educational scenarios (Pekrun, 2006). The control sense that a student has over a learning task has been shown to directly impact their affective experience. A high control sense has been found to be positively associated with positive emotions (e.g., interest) and to promote deeper learning, while a low control sense has been shown to trigger anxiety and hinder knowledge construction. The findings of this study demonstrated that affective engagement and persistence in students increased significantly when they perceived the intrinsic value (for example, interest-driven) or instrumental value (for example, test demand) of the task. CVT theory posits that facial expressions are not only a direct reflection of emotions but may also imply students' judgment of their control and value sense.这段话在latex一直报错请修改
最新发布
09-16
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值