阈值可以被视为最简单的图像分割方法。比如从一幅图像中分割出我们所需要的物体部分(可以是一部分或整体)。该方法基于图像中物体与背景之间的灰度值差异,且此分割属于像素级的分割,用图像中的每一个像素点的灰度值和我们给定的阈值进行比较,并给出相应的判断(指定分割出物体的灰度值,如黑色或白色)。阈值的选取决于具体的问题。
OpenCV 2.X 中,使用 Threshold() 函数和 adaptiveThreshold() 函数来进行图像的阈值化处理。
1. Threshold() 函数。固定阈值操作。函数原型如下:
double threshold(InputArray src, OutputArray dst, double thresh, double maxval, int type);
(1)第一个参数,InputArray 类型的 src,源图像。单通道,8 或 32位浮点数类型的深度。
(2)第二个参数,OutputArray 类型的 dst,输出图像。
(3)第三个参数,double 类型的 thresh,选取的阈值。
(4)第四个参数,double 类型的 maxval。
(5)第五个参数,int 类型的 type。阈值类型。如下所示:

本文介绍了OpenCV中的图像阈值化技术,包括固定阈值的Threshold()函数和自适应阈值的adaptiveThreshold()函数。阈值化是基于图像中物体与背景灰度值差异的简单图像分割方法,用于从图像中提取特定目标。文章提供了函数参数解释及简单示例代码。
最低0.47元/天 解锁文章
711

被折叠的 条评论
为什么被折叠?



