RFM分析-用户价值细分的精准运营方法

本文介绍了RFM分析方法,用于用户价值细分和精准运营。通过Excel进行RFM分析,包括定义R(最近一次消费时间间隔)、F(消费频率)、M(消费金额)的含义,以及如何计算和打分,最终确定用户类型,实现数据驱动的营销策略。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

对用户群体进行价值细分,哪些是重要用户,哪些是要重点挽留的用户,对不同价值区的用户制定不同的营销方案,从而进行精准运营,这是进行RFM分析的意义。

今天来聊一聊用Excel进行RFM分析的方法。

一、RFM分析的定义

01 定义

RFM模型是衡量客户价值和客户创利能力的重要工具和手段。RFM分析是根据客户活跃程度、消费次数和消费金额贡献值,进行客户价值细分的方法。RFM分析其实是降维思维的体现,将三个维度的值综合成一个值。

02 R-F-M各值的含义

  • R:rencency——客户最近一次消费时间的间隔,注意是时间间隔,不是时间,在具体实施过程中,需要选定一个基准值,计算以后得出时间间隔的天数。R越大,表示客户上一次交易的时间越久远,则越可能流失,R越小,表示客户的活跃程度越高;

  • F:frequency——客户在最近一段时间内消费的次数,F越大,表示客户消费频次高,越活跃;

  • M:monetary——客户在最近一段时间内消费的金额,M越大,则客户消费金额越高,说明客户属于VIP客户。

 

03 分类

把上述3个指标维度按高低程度划分(二分类),可以分为得到8组类型的客户。其中1表示高,0表示低。

R

F

M

类型

1

1

1

高价值客户

0

1

1

重点保持客户

1

0

1

重点发展客户

0

0

1

重点挽留客户

1

1

0

一般价值客户

0

1

0

一般保持客户

1

0

0

一般发展客户

0

0

0

潜在客户

 

 04 用什么工具进行RFM分析

各类分析工具皆可,通常会使用SPSS/SAS这类统计学常用的软件进行建模分析,python也可,tableau也可,但是这里我们来用Excel简单地进行RFM分析,需要我们自己算出各个R/F/M的值,然后加权RFM综合值进行简单地统计分析。

 

二、用Excel进行RFM分析

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

进击的可乐!

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值