对用户群体进行价值细分,哪些是重要用户,哪些是要重点挽留的用户,对不同价值区的用户制定不同的营销方案,从而进行精准运营,这是进行RFM分析的意义。
今天来聊一聊用Excel进行RFM分析的方法。
一、RFM分析的定义
01 定义
RFM模型是衡量客户价值和客户创利能力的重要工具和手段。RFM分析是根据客户活跃程度、消费次数和消费金额贡献值,进行客户价值细分的方法。RFM分析其实是降维思维的体现,将三个维度的值综合成一个值。
02 R-F-M各值的含义
R:rencency——客户最近一次消费时间的间隔,注意是时间间隔,不是时间,在具体实施过程中,需要选定一个基准值,计算以后得出时间间隔的天数。R越大,表示客户上一次交易的时间越久远,则越可能流失,R越小,表示客户的活跃程度越高;
F:frequency——客户在最近一段时间内消费的次数,F越大,表示客户消费频次高,越活跃;
M:monetary——客户在最近一段时间内消费的金额,M越大,则客户消费金额越高,说明客户属于VIP客户。
03 分类
把上述3个指标维度按高低程度划分(二分类),可以分为得到8组类型的客户。其中1表示高,0表示低。
R |
F |
M |
类型 |
1 |
1 |
1 |
高价值客户 |
0 |
1 |
1 |
重点保持客户 |
1 |
0 |
1 |
重点发展客户 |
0 |
0 |
1 |
重点挽留客户 |
1 |
1 |
0 |
一般价值客户 |
0 |
1 |
0 |
一般保持客户 |
1 |
0 |
0 |
一般发展客户 |
0 |
0 |
0 |
潜在客户 |
04 用什么工具进行RFM分析
各类分析工具皆可,通常会使用SPSS/SAS这类统计学常用的软件进行建模分析,python也可,tableau也可,但是这里我们来用Excel简单地进行RFM分析,需要我们自己算出各个R/F/M的值,然后加权RFM综合值进行简单地统计分析。
二、用Excel进行RFM分析
这