快速拿下 AI Prompt 工程师证书攻略!

本文介绍了AI技术中的Prompt在提高工作效率中的重要性,分享了获取Datawhale与讯飞星火联合颁发的PromptEngineer证书的快速攻略,包括学习指南和能力测试步骤,适用于计算机、人工智能等相关专业学生和从业者。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 Datawhale干货 

贡献者:许文豪、司玉鑫、甘元琦

Prompt 是 AI 2.0 时代打开大模型能力的金钥匙,它能够大大的提高工作效率。

如果把大语言模型 (LLM,Large Language Model) 具象成一个的员工,那 Prompt 提示词则好比是你给员工下的指令,你给出的指令越详细,员工执行的结果就越好。

未来 Prompt 会成为必备技能,每个人都可以有自己的 AI 助手,释放自己的生产力。

最近有不少同学对 Prompt 和拿到证书感兴趣,下面主要分享拿到证书的攻略。

1

证书及攻略

快速攻略如下,预计需要30分钟:

1ba3c236eabcae12f0cd4fa32cc16a0b.png

当你完成动手实践并通过最终的考试之后,你将会获得由讯飞星火和 Datawhale 共同颁发的电子证书(如下)

ff3c4705ee9fa3df2121b1bdd2b66413.png

2

你能获得

高效工具:拥有一款属于你自己的 AI 助手应用

体验学习:体验 AI 大模型丰富多样高效的创造力

实战应用:掌握 AI Prompt 提示词的基础能力

行业证书:Datawhale x 讯飞星火联合发布的 Prompt Engineer 证书

3

如何认证

能力测试满分 100 分,成功获得 80 分及以上,即可获得证书,预祝你取得好成绩。

📒 第一步:学习指南及攻略(建议用电脑)
https://datawhaler.feishu.cn/docx/ITDod4LCjo5yoixJHkdcUDw6nrc

📃 第二步:扫码参与能力测试,获得证书

b92ee1adac079d6e2f5a21fbcbe0eb2a.png

d378951b7d1152975c4de4936c57ecfa.jpeg

推荐计算机、人工智能、智能科学与技术、软件工程、大数据、网络工程、自动化、通信、数字媒体技术、电子信息工程、数据科学、统计、数学、信管、管科、金融科技、电子商务、新文科等相关专业。

### RAG 实现概述 在 Python 中实现检索增强生成 (RAG, Retrieval-Augmented Generation) 需要几个关键模块:数据预处理、索引创建、检索器配置以及最终的生成模型集成。这些组件共同作用以提升自然语言理解和生成的效果[^1]。 具体来说,在构建 RAG 系统时,通常会先建立一个高效的向量数据库来存储文档片段及其对应的嵌入表示。这一步骤对于后续快速而精准地找到最相关的上下文至关重要。一旦完成此操作,则可以通过调用 `retriever = vectorstore.as_retriever()` 来初始化检索器实例[^3]。 接着便是将上述准备好的检索机制与选定的语言模型相结合。这里可以采用 Hugging Face 的 Transformers 库作为工具包来进行编码工作;它不仅提供了多种预训练模型供选择,而且还支持自定义微调流程以便更好地适应特定应用场景的需求[^2]。 下面给出一段简单的代码示例用于说明如何搭建这样一个基本框架: ```python from langchain.embeddings import SentenceTransformerEmbeddings from langchain.vectorstores import Chroma from transformers import pipeline # 加载句子转换器并设置参数 embedding_function = SentenceTransformerEmbeddings(model_name="all-MiniLM-L6-v2") # 创建Chroma矢量库并将文本转化为向量存入其中 vector_db = Chroma.from_texts(texts=documents, embedding=embedding_function) # 定义检索函数 def retrieve_context(query): retriever = vector_db.as_retriever() docs = retriever.get_relevant_documents(query) context = "\n".join([doc.page_content for doc in docs]) return context # 初始化问答管道 qa_pipeline = pipeline("question-answering", model="distilbert-base-cased-distilled-squad") # 使用检索到的信息辅助回答问题 context = retrieve_context(user_query) response = qa_pipeline(question=user_query, context=context)['answer'] print(response) ``` 通过这种方式,能够有效地利用外部知识源扩充传统序列到序列架构的能力边界,从而获得更高质量的回答输出。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值