Andrew NG 机器学习课程笔记(一)

机器学习的动机与应用

题记:

    

        之前看过Andrew Ng的机器学习课程,但没有系统的整理与归纳,现在感觉有些东西遗忘了,于是准备每天花一些时间重温一下同时争取每天整理一节课的笔记,由于很多内容是自己理解或者在网上寻找各种资料得出的结论,难免有不足之处,还望读者指正。

 

        今天是母亲节,祝天下的妈妈们节日快乐!祝自己的母亲天天开心,儿子会尽快领着儿媳妇来孝顺您的!

 

1.机器学习定义

 

        机器学习是一门多领域交叉学科,涉及概率论、统计学、凸优化等理论学科 ,专门研究计算机怎样模拟或实现人类的学习行为,以获取心得知识或技能,重新组织新有的知识结构使之不断改善自身的性能。

 

        它是人工智能的核心,是使计算机具有智能的根本途径,其应用遍及人工智能的各个领域,它主要使用归纳、综合而不是演绎。(百度百科)

 

        Andrew NG采用了Tom Mitchell提出的定义: 对于某类任务T和性能度量P,如果一个计算机程序在T上以P衡量的性能随着经验E而自我完善,那我们称这个计算机程序在从经验E中学习。

 

2.机器学习算法分类

 

        监督学习:我常解决的分类问题的定义是有标签,也就是对于一个特征向量,它所对应的类别是确定的,也就是有那么一部分数据我们可以知道他的类别。Andrew的定义是对数据集是给出了正确答案的,这个正确答案可以是离散的,像分类,可以是连续的,像回归。Andrew的定义更全面。

 

        非监督学习:对应于上面的监督学习,非监督学习就是给你数据集,但没答案,对应分类就是没标签,对应回归就是没值。最常用的像聚类算法,这就是典型的非监督算法,这时我们关注的是数据本身。

 

        强化学习:所谓强化学习就是智能系统从环境到行为映射的学习,以使奖励信号(强化信号)函数值最大,强化学习不同于连接主义学习中的监督学习,主要表现在教师信号上,强化学习中由环境提供的强化信号是对产生动作的好坏作一种评价(通常为标量信号),而不是告诉强化学习系统RLS(reinforcement learning system)如何去产生正确的动作。由于外部环境提供的信息很少,RLS必须靠自身的经历进行学习。通过这种方式,RLS在行动-评价的环境中获得知识,改进行动方案以适应环境。(百度百科)      Andrew Ng举了一个狗的例子,让狗做某个动作,狗做了,给他吃的,不做不给吃的,通过这种评价去让狗养成做某种动作的习惯,而不是引导他正确答案,这就是强化学习。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

大兔齐齐

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值