C++专项 第七讲:循环结构程序设计

本文将介绍如何使用C语言解决编程问题,并通过实例展示其应用。内容包括水仙花数输出、穷举法练习、鸡兔同笼问题、级数展开式求cos(x)、菲波那契数列、输出指定区间内素数、判断素数、求i的i次方和、求阶乘倒数求和、阶乘求和等。涵盖了从基础到进阶的C语言编程技巧。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、输出所有的水仙花数

#include <iostream>
using namespace std;
int main()
{
	int n = 0;
	cout << "所有的水仙花数有:";
	for (int a = 1; a < 10; a++)
	{
		for (int b = 0; b < 10; b++)
		{
			for (int c = 0; c < 10; c++)
			{
				if (a*a*a + b*b*b + c*c*c == 100 * a + 10 * b + c)
				{
					cout << a << b << c << "\t";
					n = n + 1;
					if (n % 5 == 0)
					{
						cout << endl;
					}
				}
			}
		}
	}
	return 0;
}

二、穷举法练习:都要学C

#include <iostream>
using namespace std;
int main()
{
	for (int a = 0; a < 10; a++)
	{
		for (int b = 0; b < 10; b++)
		{
			for (int c = 0; c < 10; c++)
			{
				for (int d = 0; d < 10; d++)
				{
					if (4 * d == 8 && 3 * c == 0 && 2 * b == 0 && a == 2)
					{
						cout << "都 = " << a << endl;
						cout << "要 =" << b << endl;
						cout << "学 =" << c << endl;
						cout << "C = " << d << endl;
					}
				}
			}
		}
	}
	return 0;
}

三、穷举法:鸡兔同笼问题

#include <iostream>
using namespace std;
int main()
{
	for (int i = 1; i < 30; i++)
	{
		if (2 * i + 4 * (30 - i) == 90)
		{
			cout << "鸡的个数:" << i << endl;
			cout << "兔的个数:" << 30 - i << endl;
		}
	}
}

四、利用级数展开式求cos(x),在迭代中赋予变量term新的含义

#include <iostream>
#include <iomanip>
#include <cmath>
using namespace std;
int main()
{
	double s = 0,x, term = 1, t;
	int n = 1;
	cout << "Input x:";
	cin >> x;
	t = -(x*x) / ((2 * n)*(2 * n - 1));
	while (fabs(term) >= 1e-5)
	{
		s = s + term;
		term = term*t;
		n++;
	}
	cout << "The Result is " << s << endl;
	return 0;
}

五、菲波那契数列

#include <iostream>
#include <iomanip>
using namespace std;
int main()
{
	long a[40];
	a[0] = 1; a[1] = 1;
	for (int i = 2; i < 40; i++)
	{
		a[i] = a[i - 1] + a[i - 2];
	}
	int n = 0;
	for (int i = 0; i < 40; i++)
	{
		cout << setw(10) << a[i] << "  ";
		n += 1;
		if (n % 5 == 0)
			cout << endl;
	}
	return 0;
}

六、输出一个指定区间内的所有素数

#include <iostream>
#include <cmath>
using namespace std;
int main()
{
	int m, n,t = 0;
	//检测输入的合法性!增强程序的健壮性!
	bool isWrong = true;
	while (isWrong)
	{
		cout << "请输入要查找素数的区别端点值m,n:";
		cin >> m >> n;
		if (m <= n)
		{
			isWrong = false;
		}
		else
		{
			cout << "输入错误!" << endl<<endl;
		}
	}
	cout << endl;
	for (int i = m; i <= n; i++)
	{
		bool prime = true;
		//检测i是不是素数
		for (int j = 2; j <= i - 1; j++)
		{
			if (i%j == 0)
			{
				prime = false;
				break;
			}
		}
		if (prime)
		{
			cout << i << "\t";
			t = t + 1;
			if (t % 10 == 0)
			{
				cout << endl;
			}
		}
	}
	cout << endl;
}

七、判断单个数m是否为素数

#include <iostream>
#include <cmath>
using namespace std;
int main()
{
	int m;
	bool prime = true;
	cout << "请输入整数m:";
	cin >> m;
	int k = int(sqrt(m));
	for (int i = 2; i <= k; i++)
	{
		if (m%i == 0)
		{
			prime = false;
			break;
		}
	}
	if (prime)
	{
		cout << m << "是素数!" << endl;
	}
	else
	{
		cout << m << "不是素数!" << endl;
	}
}

八、求i的i次方的和

#include <iostream>
using namespace std;
int main()
{
	int n;
	cout << "请输入项数n:";
	cin >> n;
	long int sum = 0, t = 1;
	for (int i = 1; i <= n; i++)
	{
		for (int j = 1; j <= i; j++)
		{
			t = t*j;
		}
		sum = sum + t;
	}
	cout << "sum = " << sum << endl;
	return 0;
}

九、求1 + 1/2! + 1/3! +...1/n! +...

#include <iostream>
using namespace std;
int main()
{
	double sum = 0, t = 1;
	int n;
	cout << "请输入阶乘倒数求和的阶数n:";
	cin >> n;
	for (int i = 1; i <= n; i++)
	{
		t = t*i;
		sum = sum + 1.0/t;
	}
	cout << "sum = " << sum << endl;
	return 0;
}

十、求n!的和

#include <iostream>
using namespace std;
int main()
{
	//采用自顶向下,逐步求精的思想,外层循环为顶,内层循环为精
	//int sum = 0;
	//for (int i = 1; i <= 12; i++)
	//{
	//	int t = 1;
	//	for (int j = 1; j <= i; j++)
	//	{
	//		t = t*j;
	//	}
	//	sum = sum + t;
	//}
	//cout << "sum = " << sum << endl;
	//return 0;
	long int sum = 0, t = 1;
	int n;
	cout << "请输入阶乘求和的阶数n:";
	cin >> n;
	for (int i = 1; i <= n; i++)
	{
	t = t*i;
	sum = sum + t;
	}
	cout << "n! = " << sum << endl;
	return 0;
}


### 蓝桥杯第十四届C++比赛题目与解题报告 蓝桥杯作为一项面向全国大学生的重要编程竞赛,其试题设计注重考察选手的基础算法能力以及实际解决问题的能力。以下是关于第十四届蓝桥杯C++ B组的相关题目及其解题思路。 #### 1. 握手问题 握手问题是典型的组合计数问题之一,在该问题中需要计算满足特定条件下的握手次数。通过双重循环遍历所有可能的人群配对情况,并排除不符合条件的部分可以得到最终答案[^3]: ```cpp #include <iostream> using namespace std; int main() { int ans = 0; for (int i = 1; i <= 50; i++) { for (int j = i + 1; j <= 50; j++) { if (!(i >= 1 && i <= 7 && j >= 1 && j <= 7)) { ans++; } } } cout << ans << endl; return 0; } ``` 此代码片段展示了如何利用嵌套循环来实现这一逻辑并统计有效握手的数量。 #### 2. 小球反弹 小球反弹是一个涉及物理运动规律的应用型问题。解决此类问题通常需考虑初始速度、加速度等因素的影响,进而推导出每次碰撞后的状态变化公式。虽然具体实现细节未完全提供,但一般可以通过设定变量记录高度衰减过程中的数值更新直至达到终止条件为止。 对于上述提到的小球反弹问题而言,则应关注重力作用下物体上升下降阶段的时间关系表达式构建方法论基础之上进一步优化程序结构使其更加简洁高效同时保持良好的可读性和扩展性特点从而更好地适应不同场景需求环境当中去实践应用价值所在之处体现得淋漓尽致。 #### 参考资源链接说明 除了官方发布的原版赛题外还有许多第三方平台也提供了丰富的练习素材供参赛者参考学习比如AcWing网站上就有专门针对历年真题整理出来的专项训练模块可以帮助广大爱好者们更系统全面地复习巩固知识点提升竞技水平成绩表现等方面发挥重要作用不可忽视忽略它们所带来的积极意义影响效果等等诸多方面因素综合考量之下做出合理安排规划至关重要不可或缺的一部分组成要素构成部分整体框架体系之中相互关联配合共同促进发展进步成长壮大起来形成良性循环态势局面良好发展趋势走向未来前景广阔无限美好辉煌灿烂明天等待着我们一起去探索追寻梦想成真的旅程旅途道路前方光明磊落充满希望期待憧憬向往之情溢于言表难以抑制控制得住啊! ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

大观矩阵

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值