918,半年。我们今天以这样的形式纪念,接过他的接力棒

今天贝叶斯公司注册已经半年了。我们已经到达瑞金,正在进行日拱一卒持续精进。但是我们的信仰仍然坚定不移,相信人工智能在中国A股亦能成功。

西蒙斯在今年5月10日去世,而中国A股从5月20日开始也已经下跌4个月了,今天也破了2700点大关,冲向2600点大关。在这个时间节点,让我们回顾西蒙斯和文艺复兴科技以及大奖章基金,这让我们更有意义。

而且今天也是918事变纪念日。1931年日本侵占东北拉开中国14年抗战的历史序幕。而14年后,1945年9月9日,日本终究向中国递交投降书。这就是坚定不移的力量。

纪念,最好的方式就是学习先人经历血的教训后留下的宝贵经验。所以今天我们重读了西蒙斯和文艺复兴科技的发展历史,把这些宝贵的经验再次牢记。以下是我对书中关键经验的摘录。

p322:我不否认财报、其他商业新闻,肯定会推动市场变化,但,大多数投资者都密切关注这两类新闻,这会导致他们的回报只能接近平均水平。

p320:人类容易变得恐惧或贪婪,这会更加剧金融市场的动荡。

P319:在美国,除了文艺复兴科技等几家大的量化基金外,其他的量化对冲基金在5年间的平均年化收益率也才4.2%,而同期传统对冲基金的平均年化收益为3.3%,

P316:在2019年,量化投资占市场的三分之一。

P295:当根据模型推测的价格表示出不正常时,再进行投资。

P295:数据科学家会研究所有数据如何相关、何时相关、频率如何?

P294:文艺复兴科技公司雇佣了:人工智能专家、数学家、量子物理学家、统计专家。

P294:他们判断趋势、判断回归预测信号,他们采用一种“似曾相识”的模式

P294:我们只在50.75%的情况下是对的,但是就在这50.75%的情况下,我们的操作执行做到了百分百正确,这样就足以赚到数十亿美元。

P293:持有期限从一两天到一两周不等。被某些人描述为高频交易,时机上大多是在做逐步减仓或对冲。

P285:巴菲特的公司的年收益率连续20多年一只维持在20%左右。

P254:西门斯把大奖章基金的业绩提成比例提升到了36%,后来他又把提成比例提升到44%。

P244:一名员工把大部分个人储蓄都投入到了大奖章基金,因为他明白最大亏损比例也不超过20%。

P240:我们希望知道3秒、3天、3周、3个月的价格走势。

P240:有些新增的信息比如公司季度财报并不会带来额外的竞争优势,但是关于分析师观点调整的信息都有所助益。观察股价在财报发布后如何表现、跟踪公司的现金流数据/研发支出/新股增发,这些也都非常有价值。甚至一个公司被新闻报道的次数(无论正面或负面或谣言)。

P231:曾经的策略非常简单:如果某些股票前几周上涨,那么交易系统会发出购买更多类似股票的指令。但这种前提是增长将持续下去,这在熊市是不可持续的。现在,研究人员认识到了它们的错误,它们的系统在预测市场的短期行为上表现更好,而专注预测长期行为的错误信号令整个投资结果亏损严重。因此,这些研究人员果断放弃了动量策略。

P217:到1997年,大奖章基金的员工们发现了被数据证明有效的赚钱策略:识别历史价格数据中的异常模式;确保异常在统计上显著,随着时间的推移表现一只且并非随机;查看是否可以合理解释与之相关的价格表现。

P214:文艺复兴科技公司会吧奖金递延到几年时间内发放,以便留下人才。

P213:西蒙斯决定每周为高管分配3篇论文,大家需要阅读消化并且向其他人分享。阅读过几百篇论文后,西门斯和他的同时们放弃了。论文中的策略看起来看诱人,但当研究人员测试效果的时候,往往效果不行。

P201:布朗还使自己的系统具有自我适应性,即能够自主学习和自主调整。

P183:布朗团队把语音序列视为一个随机过程,每一个当前出现的语音都是随机的,但同时依赖上一步出现的那个语音,这个过程遵循马尔科夫模型。研究员们用鲍姆-沃尔琦算法来获得各种语言的概率分布。布朗团队使用贝叶斯原理,基于当前的信息给每个估值赋予一定的概率权重,然后根据新增的信息来调整这些权重。

P178:我最喜欢处于低谷状态的聪明人。

P177:弗雷的模型对于股市的微小波动太过敏感,在辨别噪声和真正的信号方面效果不显著。

P176:基金最终能实现的回报经常大幅低于其模型的理论值。

P160:我们实际上是在对人类行为建模,人类在高压下的行为具有很高的可预测性,它们会本能低表现出恐慌。我们建模的前提是人类会不断重复过去的行为。

P159:西蒙斯和他的团队觉得投资者有很多认知偏差,正是这些认知偏差导致了恐慌、崩盘、泡沫、暴涨。

P158:我们并不知道行星为什么绕着太阳转,但是我们能识别出这种模式。这就足够了。仅1994年6月一个月,大奖章基金就获得了25%的收益率。当年年底的收益率达到了71%。

P153:1992年,大奖章基金连续3年取得33%的年化收益率。

P151:斯特劳斯等人为公司积累了几十种商品、债券、外汇的几十年的数据,劳弗为了能在日内交易发现规律,把数据颗粒度切分为5分钟一个时间段最为理想。

P150:使用多个交易模型会更直观,但单一模型可以更充分利用斯特劳斯收集的广泛数据,而且后期添加新的投资品种也会更容易。

P149:劳弗主要研究领域是复变函数、代数几何。

P145:到1991年的时候,已经有另外一些人也再用计算机模型交易股票了,然而,华尔街的机构中了解这种方法的人很少。即使是这些少数人,也抱着嘲笑的心态。而像西蒙斯这样完全依赖算法投资的行为,则更令人觉得可笑而且危险。

P137:摩根斯坦利的自动化自营交易团队主要采取统计套利的方法:程序会先按照前一周的涨跌幅把股票排序,然后系统会卖空某一行业内排在涨幅榜前10%的股票,同时买入涨幅榜后10%的股票,期望反转效应的出现。这个策略大概每年能产生20%的收益。但是反转效应并不总是见效。

P133:20世纪80年代,本华曼德博教授提出:数学中某些被称为分形的结构,可以刻画自然界中的不规则形状,并且金融市场也存在分形。

P120:鲍姆、埃克斯、西蒙斯都无法抑制自己根据新闻消息做交易的冲动。伯勒坎普说:只有系统能决定我们交易什么。

P117:1989年末,大奖章的平均持有时间从之前的一周半被消减到一天半。

P114:他们会在周末来临前清仓,以防周末传来坏消息导致亏损。

P113:他们觉得也没有必要去思考这些异常现象为什么会存在。最重要的是,这些异常现象的出现频率要足够高,并且要保证这些异常现象不是统计意义上的巧合。

P112:大奖章基金只需要拥有一点点优势,高频的重复博弈就会确保大数定律站在它们这边。

P93:凯利开发了一种可以在赛马中获利的凯利公式。

P83:Axcom公司已经用了各种方法来建立模型,如依赖突破信号、简单的线性回归。卡莫纳尝试另外一种不同的方法:让计算机自己来寻找这些数据间的挂你,从而找到过去某个想死的交易环境,然后观察价格的表现。卡莫纳采取的是高维的核回归方法,这种方法更适合用于趋势交易模型。

P82:文艺复兴科技公司会在风险管理和期权定价中全面拥抱随机微分方程。

P55:小猪篮子系统使用线性代数原理给出外汇组合投资建议。几个月之后已经可以指导100万美元左右规模的交易,并且获利颇丰。组合一般只持仓一天然后就卖掉。

P34:西蒙斯在三维弯曲空间可计算形状方面取得重大突破,陈省身意识到可以扩展至所有维度空间。在论文中提出:陈-西蒙斯常量,意思就是经过各种变形之后已然不变的量。

P24:西蒙斯在困扰他已久的微分几何的极小簇问题上取得进展。微分方程描述的是数学变量的导数或者相对速率,被广泛应用在物理、生物、金融、社会学领域。包含时间或空间导数的方程就是偏微分方程,可以被用来描述物体的弹性、热量。

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值