linux无图形界面安装python2+pytorch&tensorflow并python3+pytorch&TensorFlow

本文详细介绍了在Linux服务器上安装Anaconda3,并通过其创建Python2和Python3环境,安装PyTorch及TensorFlow的过程。涵盖了环境模块管理、CUDA配置、GPU监控、Anaconda安装与虚拟环境创建等关键步骤。
摘要由CSDN通过智能技术生成

linux无图形界面安装python2+pytorch&tensorflow并python3+pytorch&TensorFlow

这篇文章主要是写给自己的一点记录和使用linux服务器的备忘录,由于linux服务器已有的环境和网络的环境的限制,可能本文中所涉及的方法,大家并不适用,因此我也就不设为全部可见了。如果有高级权限的朋友能够看到这篇文章的话,这里就是提一个醒,免得走弯路啦!嘿嘿!

登陆linux服务器后的一些操作

由于我所用的服务器中已经有了相关环境,因此可以执行如下的操作就可以很便捷的调用不同的python和cuda以及cudnn来配置不同的代码所需要的环境。

1.用来显示当前的所有可用的环境。

module avail

2.将某个需要的cudnn以及cuda载入到linux服务器(这里只是用cuda8.0做例子)

module load cuda/8.0

3.查看当前加载的cuda和cudnn的选择

module list

4. 将当前的cuda和cudnn的版本卸载掉(在想要载入其他的cuda和cudnn的版本的时候)

module unload cuda/8.0

5. 查看GPU的使用情况

nvidia-smi

2.在linux服务器中安装anaconda3

在这一部分,主要讲如何在linux服务器上安装anaconda3并且创建虚拟环境,主要是针对python2和python3中安装pytorch和TensorFlow。一共构建了四个环境。

1.下载并安装anaconda3

wget https://repo.anaconda.com/archive/Anaconda3-5.3.1-Linux-x86_64.sh

bash Anaconda3-5.3.1-linux-x86_64.sh

2. 修改bash文件

可以通过注销以下bashrc中的内容,来选择切换是否需要使用anaconda3。并可以通过修改cuda来更换conda大之间的版本。

执行完注销操作之后一定要输入:

source .bashrc

来重启bashrc(即完成注册表环境变量的更新)

3.创建一个新的虚拟环境进而安装pytorch或者TensorFlow

conda create -n tf2 python=2.7
conda activate tf2
conda install tensorflow-gpu
conda deactivate

conda create -n pytorch2 python=2.7
conda activate pytorch2
conda install pytorch torchvision -c pytorch
conda deactivate

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值