linux无图形界面安装python2+pytorch&tensorflow并python3+pytorch&TensorFlow
这篇文章主要是写给自己的一点记录和使用linux服务器的备忘录,由于linux服务器已有的环境和网络的环境的限制,可能本文中所涉及的方法,大家并不适用,因此我也就不设为全部可见了。如果有高级权限的朋友能够看到这篇文章的话,这里就是提一个醒,免得走弯路啦!嘿嘿!
登陆linux服务器后的一些操作
由于我所用的服务器中已经有了相关环境,因此可以执行如下的操作就可以很便捷的调用不同的python和cuda以及cudnn来配置不同的代码所需要的环境。
1.用来显示当前的所有可用的环境。
module avail
2.将某个需要的cudnn以及cuda载入到linux服务器(这里只是用cuda8.0做例子)
module load cuda/8.0
3.查看当前加载的cuda和cudnn的选择
module list
4. 将当前的cuda和cudnn的版本卸载掉(在想要载入其他的cuda和cudnn的版本的时候)
module unload cuda/8.0
5. 查看GPU的使用情况
nvidia-smi
2.在linux服务器中安装anaconda3
在这一部分,主要讲如何在linux服务器上安装anaconda3并且创建虚拟环境,主要是针对python2和python3中安装pytorch和TensorFlow。一共构建了四个环境。
1.下载并安装anaconda3
wget https://repo.anaconda.com/archive/Anaconda3-5.3.1-Linux-x86_64.sh
bash Anaconda3-5.3.1-linux-x86_64.sh
2. 修改bash文件
可以通过注销以下bashrc中的内容,来选择切换是否需要使用anaconda3。并可以通过修改cuda来更换conda大之间的版本。
执行完注销操作之后一定要输入:
source .bashrc
来重启bashrc(即完成注册表环境变量的更新)
3.创建一个新的虚拟环境进而安装pytorch或者TensorFlow
conda create -n tf2 python=2.7
conda activate tf2
conda install tensorflow-gpu
conda deactivate
conda create -n pytorch2 python=2.7
conda activate pytorch2
conda install pytorch torchvision -c pytorch
conda deactivate