思路核心:
(1)哈希表:时间复杂度和空间复杂度都为o(n),不修改原数据。
(2)原地交换:时间复杂度为o(n),空间复杂度为o(1),修改了原数据。
(3)二分法:时间复杂度为o(nlogn),空间复杂度为o(1),不修改原数据。
这道题本身是寻找数字,这样就可以直接考虑哈希表来做。
这道题值得注意的是,要注意空间复杂度和时间复杂度,要和面试官进行交流,询问是要追求空间还是追求时间,还要询问原数组是否可以修改。
(1)哈希表
class Solution {
public:
int findRepeatNumber(vector<int>& nums)
{
map<int, int>m1;
for (int i = 0;i < nums.size();i++)
{
if (m1.count(nums[i])>0)
{
std::map<int, int>::iterator it = m1.find(nums[i]);
return it->first;
break;
}
m1[nums[i]] = i;
}
return 1;
}
};
class Solution {
public:
int findRepeatNumber(vector<int>& nums) {
unordered_map<int, bool> map;
for (int num : nums) {
if (map[num]) return num;
map[num] = true;
}
return -1;
}
};
(2)原地交换
遍历中,第一次遇到数字 x 时,将其交换至索引 x=x 处;而当第二次遇到数字 x 时,一定有 nums[x] = x ,此时即可得到一组重复数字。
class Solution {
public:
int findRepeatNumber(vector<int>& nums) {
int i = 0;
while (i < nums.size()) {
if (nums[i] == i) {
i++;
continue;
}
if (nums[nums[i]] == nums[i])
return nums[i];
swap(nums[i], nums[nums[i]]);
}
return -1;
}
};