torch.cuda.is_available()结果为false

解决CUDA版本冲突
博主在使用PyTorch时遇到GPU无法使用的问题,经过排查发现是由于CUDA、cuDNN版本与显卡驱动不匹配所致。通过调整环境变量、卸载重装及版本回滚等操作,最终确定问题是由conda upgrade --all命令导致的CUDA版本升级,从而引发的版本不一致。通过创建新环境并指定CUDA版本,成功解决了GPU可用性问题。

我猜测是显卡驱动,cuda,pytorch不匹配(很可能是cuda版本高,显卡驱动版本低)
先查看驱动版本 nvidia-smi 发现是384.130
然后查看cuda版本
1、我直接用conda list查看cudatoolkit发现是cuda版本是10
2、用nvcc -V查看,结果命令运行不了让我安装东西,我稀里糊涂复制了提示里的命令,安装完毕后用nvcc -V查看发现cuda是7
3、用cat /usr/local/cuda/version.txt 命令查看发现版本是9
在这里插入图片描述
我靠,怎么三种情况,记得我最开始安装的是cuda9啊,应该是后来我conda upgrade all的时候更新了变成10了,没想到9和10共存了,,,至于7,我觉得可能是刚刚用nvcc -V的时候稀里糊涂安装上的。
但是为啥我使用三种命令查出来不一样

看了这个博客
在这里插入图片描述
还是不知道该咋整
后来看了这个博客好像说是环境变量没配好的原因。我就按照他的在bashrc里面加了两行,再重新试试,结果就如下了
在这里插入图片描述
nvcc 和cat 命令查出来的都是9了
我以为我成功了,结果试了试
在这里插入图片描述
GPU还是不能用

我现在想把cudatoolkit给卸载。
实在不行就把所有cuda,cudnn全部卸载重新装

慢着,我现在又发现了这篇文章
哎,还是不行
我现在打算升级显卡驱动

第二天:我没有升级显卡驱动,我现在知道了安装anaconda之前就安装过cuda9.0和cudnn
安装完anaconda以后,使用conda list会发现里面有cudatoolkit和cudnn,那么之前安装的cuda和cudnn是不是多余了呢?
在知乎上搜了一下,原来不是的,说是anaconda里面自带的cudatoolkit和cudnn不完整,一些功能可能不齐全。

后来我想我安装anaconda之前安装的是cuda9.0,安装pytorch时也是指定的cuda9.0的pytorch,结果因为做《动手学深度学习》的3.2节,使用了conda upgrade --all,把anaconda自带的cudatoolkit升级到了10,很有可能是这个原因导致的cuda版本过高,和安装anaconda之前的安装的cuda9.0不一致或者驱动版本过低,反正cudatoolkit应该保持9.0才对
我决定试验一下
新建mynewtorch环境,Python为3,然后安装Python,cuda指定9.0,conda list结果如下
在这里插入图片描述
然后我使用
source activate mynewtorch
python
import torch
print("torch.cuda.is_available())
进行测试,成功返回true!!!
在这里插入图片描述

看来真的极有可能是cudatoolkit版本过高的原因,继续试验
执行conda upgrade --all
提示我将要把pytorch从1.1.0升级到1.2.0
把cudatoolkit从9.0升级到10.0
我选择升级
在这里插入图片描述
现在变成了cudatoolkit10在这里插入图片描述
下面测试在cudatoolkit为10.的情况下能否使用gpu,结果变成了false,破案了!
在这里插入图片描述

我利用 conda list -r查询环境的历史版本
进行回滚,回到升级之前的状态可以看到rev 0是新建完mynewtorch环境的版本
rev 1是安装完cuda9.0 和pytorch1.1.0 的版本
rev 2是升级之后的版本
在这里插入图片描述
所以我用conda install --revision 1回滚到之前版本
在这里插入图片描述
并进行测试
如下,成功回滚
在这里插入图片描述
牛逼!
问题来了,当初更新所有包是为了解决某个bug,成功解决了那个bug
结果导致了版本不一致引起的gpu不可用bug
我现在又降级结局了使用gpu的bug
那之前的bug怎么搞???
conda upgrade --all这条命令太危险了吧!
怎么搞!!!???

<think>首先,用户的问题是关于PyTorch无法检测到CUDA的问题:他们遇到`torch.cuda.is_available()`返回`False`的情况。我需要基于提供的引用信息来构建一个清晰、结构化的回答。 关键引用: - [^1]: 提到如果导入torch不报错但CUDA不可用,可能是PyTorchCUDA版本不匹配。建议参考博文解决。 - [^2]: 强调如果导入torch报错,说明PyTorch安装不正确。 - [^3]: 用户报告解释器路径问题导致在PyCharm中为False,但命令行中为True。解决方法是重新添加解释器选择现有路径。 - [^4]: 指出使用清华镜像下载时可能安装的是CPU版本而非GPU版本。建议手动从官网用pip安装GPU版本。 用户的问题集中在`torch.cuda.is_available()`返回False,我需要提供解决方法。 回答结构: 1. **引言**:简要描述问题。 2. **逐步解决**:列出常见原因和解决方法。 3. **验证**:如何验证解决。 4. **相关问题**:生成相关问题。 确保使用中文回答,并遵循系统级指令: - 行内数学表达式用`$...$`,但这里可能不涉及。 - 独立公式用`$$...$$`,但可能不适用。 - LaTeX语法正确。 - 添加引用标识在段落末尾。 步骤: 1. **检查CUDA安装**:确保CUDA已正确安装。 2. **检查PyTorch安装**:确保安装的是GPU版本。 3. **检查环境路径**:特别是解释器路径。 4. **其他常见问题**:如驱动问题、版本匹配。 基于引用: - 引用[^4]提到镜像安装可能导致CPU版本。 - 引用[^3]提到解释器路径问题。 - 引用[^1]和[^2]强调版本匹配。 生成相关问题: - 基于用户问题,生成相关问题如: 1. 如何检查CUDA是否安装正确? 2. PyTorch GPU版本如何安装? 3. 为什么在PyCharm中`torch.cuda.is_available()`为False,而命令行中为True? 4. PyTorchCUDA版本匹配要求? 回答结构: - **问题描述** - **可能原因** - **解决方法** - **验证步骤** - **相关问题** 确保回答真实可靠,参考引用。</think>### PyTorch无法检测到CUDA的解决方法 当`torch.cuda.is_available()`返回`False`时,表明PyTorch无法识别系统的CUDA环境,这通常由版本不匹配、安装错误或环境配置问题引起。以下是基于常见案例的逐步解决指南,帮助您诊断和修复问题。请按顺序尝试这些方法,并确保操作前备份重要数据。 --- #### 1. **检查CUDA和PyTorch版本兼容性** PyTorch必须与CUDA版本严格匹配。例如,PyTorch 2.0 需要CUDA 11.7或11.8,而PyTorch 1.12 可能需要CUDA 11.3[^1][^2]。 - **验证CUDA安装**: 在终端运行`nvcc --version`检查CUDA版本。如果未安装CUDA,请从[NVIDIA官网](https://developer.nvidia.com/cuda-toolkit-archive)下载对应版本。 - **验证PyTorch是否为GPU版本**: 在Python中运行以下代码: ```python import torch print(torch.__version__) # 输出PyTorch版本 print(torch.version.cuda) # 输出PyTorch绑定的CUDA版本 ``` 如果`torch.version.cuda`返回`None`,说明安装的是CPU版本[^4]。 --- #### 2. **重新安装PyTorch GPU版本** 常见错误是使用镜像源(如清华镜像)安装时,默认下载CPU版本[^4]。 - **卸载现有PyTorch**: ```bash pip uninstall torch torchvision torchaudio ``` - **安装GPU版本**: 从PyTorch官网获取安装命令,确保选择与CUDA匹配的版本。例如: ```bash # 示例命令(CUDA 11.8环境) pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118 ``` 避免使用`conda install`或镜像源,优先用`pip`从官网下载[^4]。 --- #### 3. **检查环境路径和解释器配置** 开发环境(如PyCharm)可能因解释器路径错误导致问题[^3]。 - **验证命令行与IDE差异**: 在终端运行Python并检查`torch.cuda.is_available()`: ```bash python -c "import torch; print(torch.cuda.is_available())" ``` 如果命令行返回`True`而IDE返回`False`,说明IDE的解释器路径错误。 - **修复IDE解释器**: 在PyCharm中: 1. 打开设置(Settings)> 项目(Project)> Python解释器(Python Interpreter)。 2. 移除现有解释器,重新添加时选择“现有环境”(Existing Environment),指向已安装PyTorch的Python路径(如`venv/bin/python`)[^3]。 --- #### 4. **检查驱动和系统问题** - **更新NVIDIA驱动**: 运行`nvidia-smi`确认驱动版本。如果输出中无GPU信息,请更新驱动: ```bash sudo apt update && sudo apt install nvidia-driver-535 # Ubuntu示例 ``` - **验证CUDA工具包**: 运行`/usr/local/cuda/bin/nvcc --version`确保CUDA路径正确。 - **环境变量配置**: 添加CUDA路径到环境变量: ```bash export PATH=/usr/local/cuda/bin:$PATH export LD_LIBRARY_PATH=/usr/local/cuda/lib64:$LD_LIBRARY_PATH ``` --- #### 5. **验证解决** 修复后运行以下代码确认: ```python import torch if torch.cuda.is_available(): print(f"CUDA可用!设备:{torch.cuda.get_device_name(0)}") else: print("问题未解决,请检查上述步骤。") ``` 如果问题依旧,尝试重启系统或创建新的虚拟环境[^1][^3]。 --- ### 相关问题 1. 如何检查PyTorchCUDA的版本兼容性? 2. 为什么在PyCharm中`torch.cuda.is_available()`为False,而在命令行中为True? 3. PyTorch GPU版本安装失败有哪些常见原因? 4. 如何为PyTorch配置多个CUDA版本? [^1]: 引用[1]:已安装CUDA与Pytorchtorch.cuda.is_available()False。解决方法在这篇博文中:【一文解决】已安装CUDA与Pytorchtorch.cuda.is_available()False_torch.cuda.is available返回false-CSDN博客 [^2]: 引用[2]:【一文解决】已安装CUDA与Pytorchtorch.cuda.is_available()False。注意,本文解决的问题是,import torch不报错,但Pytorchcuda没有正确匹配上。 [^3]: 引用[3]:(已解决)已安装CUDA与Pytorchtorch.cuda.is_available()False。本人遇到的问题是解释器路径不对。 [^4]: 引用[4]:安装pytorch报错torch.cuda.is_available()=false的解决方法。如果是清华镜像加速下载的,无论你是重装多少次,都一样,torch.cuda.is_available()返回false
评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值