论文地址:论文
大体分为两部分,第一部分是自己读文章时的记录,第二部分是自己总的感想。
一、论文概述:
1、在摘要中提出了DR-GAN的名字,给出了论文的三个创新点。
(1)通过generator 的encoder-decoder框架学习了生成和判别的表示(representation);
(2)这种表示是从姿态这种人脸变量得出。姿态(pose)代码传输到decoder,姿态的估计(estimation)传给了判别器;
(3)DR-GAN可以输入一张或者多张照片,并且根据随机的合成图片生成统一的表示。
2、根据figure1,在discriminator和generator都可以生成身份标识,可以根据姿态代码生成特定身份的人脸。
endoder输入的是任意角度的人脸,decoder合成目标角度的人脸。G起到了人脸旋转的作用。D不仅比较真实图片和合成图片,而且输出身份和角度。因此,G需要做到:(1)旋转的图片跟输入的图片的身份一样;(2)学到的表示应该更具有多样性。
本文为DR-GAN论文笔记,探讨了如何通过encoder-decoder框架学习姿态不变的人脸识别表示。DR-GAN能根据姿态代码生成特定角度人脸,其目标函数和网络结构设计有助于学习区分度高的身份信息。此外,Multi-Image DR-GAN引入了自信系数以融合多张图片的表示。实验在Multi-Pie数据集上进行,强调了数据处理和网络结构的重要性。
最低0.47元/天 解锁文章
1万+

被折叠的 条评论
为什么被折叠?



