图像目标检测-车辆识别

目前检测常用算法
RCNN系列, fast-rcnn, faster-rcnn (two-stage方法)

rcnn(2014) ref

主要思路:生成候选区域,然后对每个区域用深度网络提取特征,送到 N 个 SVM 分类器判断是否属于某一类,用回归器对位置进行精修。

精修的方式:用一个线性脊回归器(就是普通线性回归加 L 2 L_2 L2 norm,ref)来预测偏移和缩放值

fast-rcnn(2015) ref & ref

基本上从整个网络的设计和实现思路上都进行了大幅的修改;还是需要离线 selective search 候选框的过程(2s),把原先对每个候选框做特征提取的过程改成 直接对全图做卷积,生成的如 40 * 60 的特征图,

### 图像识别中的图像分类与目标检测 #### 图像分类的概念和技术 图像分类是一种用于对图像中特定的对象类别进行分类或预测的技术,其主要目的是准确识别图像中的特征[^3]。具体来说,图像分类的任务是将整幅图像归属于某个预先定义好的类别之一。例如,在经典的MNIST数据集中,任务是对手写体数字(0到9)进行分类;而在CIFAR-10数据集上,则是要判断一幅图像是飞机、汽车、鸟、猫等十种类别中的哪一个。 对于图像分类而言,输入是一张完整的图片,而输出则是这张图片所属的一个单一标签。这意味着在整个过程中并不关心图像内部的具体物体位置及其数量,只关注整体内容的归属问题[^1]。 ```python import tensorflow as tf from tensorflow.keras import datasets, layers, models # 加载并准备 CIFAR10 数据集 (train_images, train_labels), (test_images, test_labels) = datasets.cifar10.load_data() # 构建卷积神经网络模型 model = models.Sequential() model.add(layers.Conv2D(32, (3, 3), activation='relu', input_shape=(32, 32, 3))) ... ``` #### 目标检测的方法 相比之下,目标检测不仅能够完成上述提到的分类工作——即确定图像中存在的各类物体的身份,还进一步实现了这些物体的空间定位功能。也就是说,除了给出“这是什么”的答案外,还会提供关于“它在哪里”的信息,这通常是通过边界框的形式来表示每个被发现的目标所在区域[^4]。 在实际应用场景下,比如自动驾驶领域里,车辆需要实时感知周围环境变化,这就依赖于高效精准的目标检测算法来识别人行横道上的行人或是道路上行驶着的各种交通工具,并及时作出反应以保障安全驾驶[^5]。 ```python import torch from torchvision.models.detection import fasterrcnn_resnet50_fpn from PIL import Image import transforms as T device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu') # 使用预训练的 Faster R-CNN 模型 model = fasterrcnn_resnet50_fpn(pretrained=True).to(device) def get_transform(): custom_transforms = [] ... ``` #### 区别与联系 尽管两者都涉及到对图像内物体的理解,但是它们之间存在着明显的差异: - **任务范围**:图像分类专注于整个图像级别的标注,而目标检测则更细化到了单个物体层面; - **输出形式**:前者仅返回一个全局性的类别标签,后者会附加具体的坐标信息描述各物体的位置; - **复杂程度**:由于增加了空间维度的信息处理需求,因此一般来说,目标检测要比单纯的图像分类更加复杂一些。 然而,这两者并非完全独立存在,实际上很多情况下二者会被结合起来使用。例如在一个复杂的场景理解系统中,先利用目标检测找出所有感兴趣的个体之后再分别对其进行详细的分类分析,从而达到更高的精度和效率。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值