文章目录
目前检测常用算法
RCNN系列, fast-rcnn, faster-rcnn (two-stage方法)
rcnn(2014) ref
主要思路:生成候选区域,然后对每个区域用深度网络提取特征,送到 N 个 SVM 分类器判断是否属于某一类,用回归器对位置进行精修。
精修的方式:用一个线性脊回归器(就是普通线性回归加 L 2 L_2 L2 norm,ref)来预测偏移和缩放值
基本上从整个网络的设计和实现思路上都进行了大幅的修改;还是需要离线 selective search 候选框的过程(2s),把原先对每个候选框做特征提取的过程改成 直接对全图做卷积,生成的如 40 * 60 的特征图,