线段树
转载请注明出处,谢谢!http://blog.csdn.net/metalseed/article/details/8039326
持续更新中···
一:线段树基本概念
1:概述
线段树,类似区间树,是一个完全二叉树,它在各个节点保存一条线段(数组中的一段子数组),主要用于高效解决连续区间的动态查询问题,由于二叉结构的特性,它基本能保持每个操作的复杂度为O(lgN)!
性质:父亲的区间是[a,b],(c=(a+b)/2)左儿子的区间是[a,c],右儿子的区间是[c+1,b],线段树需要的空间为数组大小的四倍
2:基本操作(demo用的是查询区间最小值)
线段树的主要操作有:
(1):线段树的构造 void build(int node, int begin, int end);
主要思想是递归构造,如果当前节点记录的区间只有一个值,则直接赋值,否则递归构造左右子树,最后回溯的时候给当前节点赋值
#include <iostream>
using namespace std;
const int maxind = 256;
int segTree[maxind * 4 + 10];
int array[maxind];
/* 构造函数,得到线段树 */
void build(int node, int begin, int end)
{
if (begin == end)
segTree[node] = array[begin]; /* 只有一个元素,节点记录该单元素 */
else
{
/* 递归构造左右子树 */
build(2*node, begin, (begin+end)/2);
build(2*node+1, (begin+end)/2+1, end);
/* 回溯时得到当前node节点的线段信息 */
if (segTree[2 * node] <= segTree[2 * node + 1])
segTree[node] = segTree[2 * node];
else
segTree[node] = segTree[2 * node + 1];
}
}
int main()
{
array[0] = 1, array[1] = 2,array[2] = 2, array[3] = 4, array[4] = 1, array[5] = 3;
build(1, 0, 5);
for(int i = 1; i<=20; ++i)
cout<< "seg"<< i << "=" <<segTree[i] <<endl;
return 0;
}
此build构造成的树如图:
(2):区间查询int query(int node, int begin, int end, int left, int right);
(其中node为当前查询节点,begin,end为当前节点存储的区间,left,right为此次query所要查询的区间)
主要思想是把所要查询的区间[a,b]划分为线段树上的节点,然后将这些节点代表的区间合并起来得到所需信息
比如前面一个图中所示的树,如果询问区间是[0,2],或者询问的区间是[3,3],不难直接找到对应的节点回答这一问题。但并不是所有的提问都这么容易回答,比如[0,3],就没有哪一个节点记录了这个区间的最小值。当然,解决方法也不难找到:把[0,2]和[3,3]两个区间(它们在整数意义上是相连的两个区间)的最小值“合并”起来,也就是求这两个最小值的最小值,就能求出[0,3]范围的最小值。同理,对于其他询问的区间,也都可以找到若干个相连的区间,合并后可以得到询问的区间。
int query(int node, int begin, int end, int left, int right)
{
int p1, p2;
/* 查询区间和要求的区间没有交集 */
if (left > end || right < begin)
return -1;
/* if the current interval is included in */
/* the query interval return segTree[node] */
if (begin >= left && end <= right)
return segTree[node];
/* compute the minimum position in the */
/* left and right part of the interval */
p1 = query(2 * node, begin, (begin + end) / 2, left, right);
p2 = query(2 * node + 1, (begin + end) / 2 + 1, end, left, right);
/* return the expect value */
if (p1 == -1)
return p2;
if (p2 == -1)
return p1;
if (p1 <= p2)
return p1;
return p2;
}
可见,这样的过程一定选出了尽量少的区间,它们相连后正好涵盖了整个[left,right],没有重复也没有遗漏。同时,考虑到线段树上每层的节点最多会被选取2个,一共选取的节点数也是O(log n)的,因此查询的时间复杂度也是O(log n)。
线段树并不适合所有区间查询情况,它的使用条件是“相邻的区间的信息可以被合并成两个区间的并区间的信息”。即问题是可以被分解解决的。
(3):区间或节点的更新 及 线段树的动态维护update (这是线段树核心价值所在,节点中的标记域可以解决N多种问题)
动态维护需要用到标记域,延迟标记等。
a:单节点更新
void Updata(int node, int begin, int end, int ind, int add)/*单节点更新*/
{
if( begin == end )
{
segTree[node] += add;
return ;
}
int m = ( left + right ) >> 1;
if(ind <= m)
Updata(node * 2,left, m, ind, add);
else
Updata(node * 2 + 1, m + 1, right, ind, add);
/*回溯更新父节点*/
segTree[node] = min(segTree[node * 2], segTree[node * 2 + 1]);
}
b:区间更新(线段树中最有用的)
需要用到延迟标记,每个结点新增加一个标记,记录这个结点是否被进行了某种修改操作(这种修改操作会影响其子结点)。对于任意区间的修改,我们先按照查询的方式将其划分成线段树中的结点,然后修改这些结点的信息,并给这些结点标上代表这种修改操作的标记。在修改和查询的时候,如果我们到了一个结点p,并且决定考虑其子结点,那么我们就要看看结点p有没有标记,如果有,就要按照标记修改其子结点的信息,并且给子结点都标上相同的标记,同时消掉p的标记。(优点在于,不用将区间内的所有值都暴力更新,大大提高效率,因此区间更新是最优用的操作)
void Change来自dongxicheng.org
void Change(node *p, int a, int b) /* 当前考察结点为p,修改区间为(a,b]*/
{
if (a <= p->Left && p->Right <= b)
/* 如果当前结点的区间包含在修改区间内*/
{
...... /* 修改当前结点的信息,并标上标记*/
return;
}
Push_Down(p); /* 把当前结点的标记向下传递*/
int mid = (p->Left + p->Right) / 2; /* 计算左右子结点的分隔点
if (a < mid) Change(p->Lch, a, b); /* 和左孩子有交集,考察左子结点*/
if (b > mid) Change(p->Rch, a, b); /* 和右孩子有交集,考察右子结点*/
Update(p); /* 维护当前结点的信息(因为其子结点的信息可能有更改)*/
}
3:主要应用
(1):区间最值查询问题 (见模板1)
(2):连续区间修改或者单节点更新的动态查询问题 (见模板2)
(3):多维空间的动态查询 (见模板3)
二:典型模板
模板1:
RMQ,查询区间最值下标---min
#include<iostream>
using namespace std;
#define MAXN 100
#define MAXIND 256 //线段树节点个数
//构建线段树,目的:得到M数组.
void build(int node, int b, int e, int M[], int A[])
{
if (b == e)
M[node] = b; //只有一个元素,只有一个下标
else
{
build(2 * node, b, (b + e) / 2, M, A);
build(2 * node + 1, (b + e) / 2 + 1, e, M, A);
if (A[M[2 * node]] <= A[M[2 * node + 1]])
M[node] = M[2 * node];
else
M[node] = M[2 * node + 1];
}
}
//找出区间 [i, j] 上的最小值的索引
int query(int node, int b, int e, int M[], int A[], int i, int j)
{
int p1, p2;
//查询区间和要求的区间没有交集
if (i > e || j < b)
return -1;
if (b >= i && e <= j)
return M[node];
p1 = query(2 * node, b, (b + e) / 2, M, A, i, j);
p2 = query(2 * node + 1, (b + e) / 2 + 1, e, M, A, i, j);
//return the position where the overall
//minimum is
if (p1 == -1)
return M[node] = p2;
if (p2 == -1)
return M[node] = p1;
if (A[p1] <= A[p2])
return M[node] = p1;
return M[node] = p2;
}
int main()
{
int M[MAXIND]; //下标1起才有意义,否则不是二叉树,保存下标编号节点对应区间最小值的下标.
memset(M,-1,sizeof(M));
int a[]={3,4,5,7,2,1,0,3,4,5};
build(1, 0, sizeof(a)/sizeof(a[0])-1, M, a);
cout<<query(1, 0, sizeof(a)/sizeof(a[0])-1, M, a, 0, 5)<<endl;
return 0;
}
模板2:
连续区间修改或者单节点更新的动态查询问题 (此模板查询区间和)
#include <cstdio>
#include <algorithm>
using namespace std;
#define lson l , m , rt << 1
#define rson m + 1 , r , rt << 1 | 1
#define root 1 , N , 1
#define LL long long
const int maxn = 111111;
LL add[maxn<<2];
LL sum[maxn<<2];
void PushUp(int rt) {
sum[rt] = sum[rt<<1] + sum[rt<<1|1];
}
void PushDown(int rt,int m) {
if (add[rt]) {
add[rt<<1] += add[rt];
add[rt<<1|1] += add[rt];
sum[rt<<1] += add[rt] * (m - (m >> 1));
sum[rt<<1|1] += add[rt] * (m >> 1);
add[rt] = 0;
}
}
void build(int l,int r,int rt) {
add[rt] = 0;
if (l == r) {
scanf("%lld",&sum[rt]);
return ;
}
int m = (l + r) >> 1;
build(lson);
build(rson);
PushUp(rt);
}
void update(int L,int R,int c,int l,int r,int rt) {
if (L <= l && r <= R) {
add[rt] += c;
sum[rt] += (LL)c * (r - l + 1);
return ;
}
PushDown(rt , r - l + 1);
int m = (l + r) >> 1;
if (L <= m) update(L , R , c , lson);
if (m < R) update(L , R , c , rson);
PushUp(rt);
}
LL query(int L,int R,int l,int r,int rt) {
if (L <= l && r <= R) {
return sum[rt];
}
PushDown(rt , r - l + 1);
int m = (l + r) >> 1;
LL ret = 0;
if (L <= m) ret += query(L , R , lson);
if (m < R) ret += query(L , R , rson);
return ret;
}
int main() {
int N , Q;
scanf("%d%d",&N,&Q);
build(root);
while (Q --) {
char op[2];
int a , b , c;
scanf("%s",op);
if (op[0] == 'Q') {
scanf("%d%d",&a,&b);
printf("%lld\n",query(a , b ,root));
} else {
scanf("%d%d%d",&a,&b,&c);
update(a , b , c , root);
}
}
return 0;
}
模板3:
多维空间的动态查询
三:练习题目
下面是hh线段树代码,典型练习哇~
在代码前先介绍一些我的线段树风格:
- maxn是题目给的最大区间,而节点数要开4倍,确切的来说节点数要开大于maxn的最小2x的两倍
- lson和rson分辨表示结点的左儿子和右儿子,由于每次传参数的时候都固定是这几个变量,所以可以用预定于比较方便的表示
- 以前的写法是另外开两个个数组记录每个结点所表示的区间,其实这个区间不必保存,一边算一边传下去就行,只需要写函数的时候多两个参数,结合lson和rson的预定义可以很方便
- PushUP(int rt)是把当前结点的信息更新到父结点
- PushDown(int rt)是把当前结点的信息更新给儿子结点
- rt表示当前子树的根(root),也就是当前所在的结点
整理这些题目后我觉得线段树的题目整体上可以分成以下四个部分:
单点更新:最最基础的线段树,只更新叶子节点,然后把信息用PushUP(int r)这个函数更新上来
- hdu1166 敌兵布阵
- 题意:O(-1)
- 思路:O(-1)
线段树功能:update:单点增减 query:区间求和
code:
#include<cstring>
#include<iostream>
#define M 50005
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
/*left,right,root,middle*/
int sum[M<<2];
inline void PushPlus(int rt)
{
sum[rt] = sum[rt<<1] + sum[rt<<1|1];
}
void Build(int l, int r, int rt)
{
if(l == r)
{
scanf("%d", &sum[rt]);
return ;
}
int m = ( l + r )>>1;
Build(lson);
Build(rson);
PushPlus(rt);
}
void Updata(int p, int add, int l, int r, int rt)
{
if( l == r )
{
sum[rt] += add;
return ;
}
int m = ( l + r ) >> 1;
if(p <= m)
Updata(p, add, lson);
else
Updata(p, add, rson);
PushPlus(rt);
}
int Query(int L,int R,int l,int r,int rt)
{
if( L <= l && r <= R )
{
return sum[rt];
}
int m = ( l + r ) >> 1;
int ans=0;
if(L<=m )
ans+=Query(L,R,lson);
if(R>m)
ans+=Query(L,R,rson);
return ans;
}
int main()
{
int T, n, a, b;
scanf("%d",&T);
for( int i = 1; i <= T; ++i )
{
printf("Case %d:\n",i);
scanf("%d",&n);
Build(1,n,1);
char op[10];
while( scanf("%s",op) &&op[0]!='E' )
{
scanf("%d %d", &a, &b);
if(op[0] == 'Q')
printf("%d\n",Query(a,b,1,n,1));
else if(op[0] == 'S')
Updata(a,-b,1,n,1);
else
Updata(a,b,1,n,1);
}
}
return 0;
}
hdu1754 I Hate It
题意:O(-1)
思路:O(-1)
线段树功能:update:单点替换 query:区间最值
#include <cstdio>
#include <algorithm>
using namespace std;
#define lson l , m , rt << 1
#define rson m + 1 , r , rt << 1 | 1
const int maxn = 222222;
int MAX[maxn<<2];
void PushUP(int rt) {
MAX[rt] = max(MAX[rt<<1] , MAX[rt<<1|1]);
}
void build(int l,int r,int rt) {
if (l == r) {
scanf("%d",&MAX[rt]);
return ;
}
int m = (l + r) >> 1;
build(lson);
build(rson);
PushUP(rt);
}
void update(int p,int sc,int l,int r,int rt) {
if (l == r) {
MAX[rt] = sc;
return ;
}
int m = (l + r) >> 1;
if (p <= m) update(p , sc , lson);
else update(p , sc , rson);
PushUP(rt);
}
int query(int L,int R,int l,int r,int rt) {
if (L <= l && r <= R) {
return MAX[rt];
}
int m = (l + r) >> 1;
int ret = 0;
if (L <= m) ret = max(ret , query(L , R , lson));
if (R > m) ret = max(ret , query(L , R , rson));
return ret;
}
int main() {
int n , m;
while (~scanf("%d%d",&n,&m)) {
build(1 , n , 1);
while (m --) {
char op[2];
int a , b;
scanf("%s%d%d",op,&a,&b);
if (op[0] == 'Q') printf("%d\n",query(a , b , 1 , n , 1));
else update(a , b , 1 , n , 1);
}
}
return 0;
}
hdu1394 Minimum Inversion Number
题意:求Inversion后的最小逆序数
思路:用O(nlogn)复杂度求出最初逆序数后,就可以用O(1)的复杂度分别递推出其他解
线段树功能:update:单点增减 query:区间求和
#include <cstdio>
#include <algorithm>
using namespace std;
#define lson l , m , rt << 1
#define rson m + 1 , r , rt << 1 | 1
const int maxn = 5555;
int sum[maxn<<2];
void PushUP(int rt) {
sum[rt] = sum[rt<<1] + sum[rt<<1|1];
}
void build(int l,int r,int rt) {
sum[rt] = 0;
if (l == r) return ;
int m = (l + r) >> 1;
build(lson);
build(rson);
}
void update(int p,int l,int r,int rt) {
if (l == r) {
sum[rt] ++;
return ;
}
int m = (l + r) >> 1;
if (p <= m) update(p , lson);
else update(p , rson);
PushUP(rt);
}
int query(int L,int R,int l,int r,int rt) {
if (L <= l && r <= R) {
return sum[rt];
}
int m = (l + r) >> 1;
int ret = 0;
if (L <= m) ret += query(L , R , lson);
if (R > m) ret += query(L , R , rson);
return ret;
}
int x[maxn];
int main() {
int n;
while (~scanf("%d",&n)) {
build(0 , n - 1 , 1);
int sum = 0;
for (int i = 0 ; i < n ; i ++) {
scanf("%d",&x[i]);
sum += query(x[i] , n - 1 , 0 , n - 1 , 1);
update(x[i] , 0 , n - 1 , 1);
}
int ret = sum;
for (int i = 0 ; i < n ; i ++) {
sum += n - x[i] - x[i] - 1;
ret = min(ret , sum);
}
printf("%d\n",ret);
}
return 0;
}
hdu2795 Billboard
题意:h*w的木板,放进一些1*L的物品,求每次放空间能容纳且最上边的位子
思路:每次找到最大值的位子,然后减去L
线段树功能:query:区间求最大值的位子(直接把update的操作在query里做了)
#include <cstdio>
#include <algorithm>
using namespace std;
#define lson l , m , rt << 1
#define rson m + 1 , r , rt << 1 | 1
const int maxn = 222222;
int h , w , n;
int MAX[maxn<<2];
void PushUP(int rt) {
MAX[rt] = max(MAX[rt<<1] , MAX[rt<<1|1]);
}
void build(int l,int r,int rt) {
MAX[rt] = w;
if (l == r) return ;
int m = (l + r) >> 1;
build(lson);
build(rson);
}
int query(int x,int l,int r,int rt) {
if (l == r) {
MAX[rt] -= x;
return l;
}
int m = (l + r) >> 1;
int ret = (MAX[rt<<1] >= x) ? query(x , lson) : query(x , rson);
PushUP(rt);
return ret;
}
int main() {
while (~scanf("%d%d%d",&h,&w,&n)) {
if (h > n) h = n;
build(1 , h , 1);
while (n --) {
int x;
scanf("%d",&x);
if (MAX[1] < x) puts("-1");
else printf("%d\n",query(x , 1 , h , 1));
}
}
return 0;
}
成段更新(通常这对初学者来说是一道坎),需要用到延迟标记(或者说懒惰标记),简单来说就是每次更新的时候不要更新到底,用延迟标记使得更新延迟到下次需要更新or询问到的时候
题意:O(-1)
思路:O(-1)
线段树功能:update:成段替换 (由于只query一次总区间,所以可以直接输出1结点的信息)
#include <cstdio>
#include <algorithm>
using namespace std;
#define lson l , m , rt << 1
#define rson m + 1 , r , rt << 1 | 1
const int maxn = 111111;
int h , w , n;
int col[maxn<<2];
int sum[maxn<<2];
void PushUp(int rt) {
sum[rt] = sum[rt<<1] + sum[rt<<1|1];
}
void PushDown(int rt,int m) {
if (col[rt]) {
col[rt<<1] = col[rt<<1|1] = col[rt];
sum[rt<<1] = (m - (m >> 1)) * col[rt];
sum[rt<<1|1] = (m >> 1) * col[rt];
col[rt] = 0;
}
}
void build(int l,int r,int rt) {
col[rt] = 0;
sum[rt] = 1;
if (l == r) return ;
int m = (l + r) >> 1;
build(lson);
build(rson);
PushUp(rt);
}
void update(int L,int R,int c,int l,int r,int rt) {
if (L <= l && r <= R) {
col[rt] = c;
sum[rt] = c * (r - l + 1);
return ;
}
PushDown(rt , r - l + 1);
int m = (l + r) >> 1;
if (L <= m) update(L , R , c , lson);
if (R > m) update(L , R , c , rson);
PushUp(rt);
}
int main() {
int T , n , m;
scanf("%d",&T);
for (int cas = 1 ; cas <= T ; cas ++) {
scanf("%d%d",&n,&m);
build(1 , n , 1);
while (m --) {
int a , b , c;
scanf("%d%d%d",&a,&b,&c);
update(a , b , c , 1 , n , 1);
}
printf("Case %d: The total value of the hook is %d.\n",cas , sum[1]);
}
return 0;
}
poj3468 A Simple Problem with Integers
题意:O(-1)
思路:O(-1)
线段树功能:update:成段增减 query:区间求和
#include <cstdio>
#include <algorithm>
using namespace std;
#define lson l , m , rt << 1
#define rson m + 1 , r , rt << 1 | 1
#define LL long long
const int maxn = 111111;
LL add[maxn<<2];
LL sum[maxn<<2];
void PushUp(int rt) {
sum[rt] = sum[rt<<1] + sum[rt<<1|1];
}
void PushDown(int rt,int m) {
if (add[rt]) {
add[rt<<1] += add[rt];
add[rt<<1|1] += add[rt];
sum[rt<<1] += add[rt] * (m - (m >> 1));
sum[rt<<1|1] += add[rt] * (m >> 1);
add[rt] = 0;
}
}
void build(int l,int r,int rt) {
add[rt] = 0;
if (l == r) {
scanf("%lld",&sum[rt]);
return ;
}
int m = (l + r) >> 1;
build(lson);
build(rson);
PushUp(rt);
}
void update(int L,int R,int c,int l,int r,int rt) {
if (L <= l && r <= R) {
add[rt] += c;
sum[rt] += (LL)c * (r - l + 1);
return ;
}
PushDown(rt , r - l + 1);
int m = (l + r) >> 1;
if (L <= m) update(L , R , c , lson);
if (m < R) update(L , R , c , rson);
PushUp(rt);
}
LL query(int L,int R,int l,int r,int rt) {
if (L <= l && r <= R) {
return sum[rt];
}
PushDown(rt , r - l + 1);
int m = (l + r) >> 1;
LL ret = 0;
if (L <= m) ret += query(L , R , lson);
if (m < R) ret += query(L , R , rson);
return ret;
}
int main() {
int N , Q;
scanf("%d%d",&N,&Q);
build(1 , N , 1);
while (Q --) {
char op[2];
int a , b , c;
scanf("%s",op);
if (op[0] == 'Q') {
scanf("%d%d",&a,&b);
printf("%lld\n",query(a , b , 1 , N , 1));
} else {
scanf("%d%d%d",&a,&b,&c);
update(a , b , c , 1 , N , 1);
}
}
return 0;
}
poj2528 Mayor’s posters
题意:在墙上贴海报,海报可以互相覆盖,问最后可以看见几张海报
思路:这题数据范围很大,直接搞超时+超内存,需要离散化:
离散化简单的来说就是只取我们需要的值来用,比如说区间[1000,2000],[1990,2012] 我们用不到[-∞,999][1001,1989][1991,1999][2001,2011][2013,+∞]这些值,所以我只需要1000,1990,2000,2012就够了,将其分别映射到0,1,2,3,在于复杂度就大大的降下来了
所以离散化要保存所有需要用到的值,排序后,分别映射到1~n,这样复杂度就会小很多很多
而这题的难点在于每个数字其实表示的是一个单位长度(并非一个点),这样普通的离散化会造成许多错误(包括我以前的代码,poj这题数据奇弱)
给出下面两个简单的例子应该能体现普通离散化的缺陷:
例子一:1-10 1-4 5-10
例子二:1-10 1-4 6-10
普通离散化后都变成了[1,4][1,2][3,4]
线段2覆盖了[1,2],线段3覆盖了[3,4],那么线段1是否被完全覆盖掉了呢?
例子一是完全被覆盖掉了,而例子二没有被覆盖
为了解决这种缺陷,我们可以在排序后的数组上加些处理,比如说[1,2,6,10]
如果相邻数字间距大于1的话,在其中加上任意一个数字,比如加成[1,2,3,6,7,10],然后再做线段树就好了.
线段树功能:update:成段替换 query:简单hash
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
#define lson l , m , rt << 1
#define rson m + 1 , r , rt << 1 | 1
const int maxn = 11111;
bool hash[maxn];
int li[maxn] , ri[maxn];
int X[maxn*3];
int col[maxn<<4];
int cnt;
void PushDown(int rt) {
if (col[rt] != -1) {
col[rt<<1] = col[rt<<1|1] = col[rt];
col[rt] = -1;
}
}
void update(int L,int R,int c,int l,int r,int rt) {
if (L <= l && r <= R) {
col[rt] = c;
return ;
}
PushDown(rt);
int m = (l + r) >> 1;
if (L <= m) update(L , R , c , lson);
if (m < R) update(L , R , c , rson);
}
void query(int l,int r,int rt) {
if (col[rt] != -1) {
if (!hash[col[rt]]) cnt ++;
hash[ col[rt] ] = true;
return ;
}
if (l == r) return ;
int m = (l + r) >> 1;
query(lson);
query(rson);
}
int Bin(int key,int n,int X[]) {
int l = 0 , r = n - 1;
while (l <= r) {
int m = (l + r) >> 1;
if (X[m] == key) return m;
if (X[m] < key) l = m + 1;
else r = m - 1;
}
return -1;
}
int main() {
int T , n;
scanf("%d",&T);
while (T --) {
scanf("%d",&n);
int nn = 0;
for (int i = 0 ; i < n ; i ++) {
scanf("%d%d",&li[i] , &ri[i]);
X[nn++] = li[i];
X[nn++] = ri[i];
}
sort(X , X + nn);
int m = 1;
for (int i = 1 ; i < nn; i ++) {
if (X[i] != X[i-1]) X[m ++] = X[i];
}
for (int i = m - 1 ; i > 0 ; i --) {
if (X[i] != X[i-1] + 1) X[m ++] = X[i-1] + 1;
}
sort(X , X + m);
memset(col , -1 , sizeof(col));
for (int i = 0 ; i < n ; i ++) {
int l = Bin(li[i] , m , X);
int r = Bin(ri[i] , m , X);
update(l , r , i , 0 , m , 1);
}
cnt = 0;
memset(hash , false , sizeof(hash));
query(0 , m , 1);
printf("%d\n",cnt);
}
return 0;
}
poj3225 Help with Intervals
题意:区间操作,交,并,补等
思路:
我们一个一个操作来分析:(用0和1表示是否包含区间,-1表示该区间内既有包含又有不包含)
U:把区间[l,r]覆盖成1
I:把[-∞,l)(r,∞]覆盖成0
D:把区间[l,r]覆盖成0
C:把[-∞,l)(r,∞]覆盖成0 , 且[l,r]区间0/1互换
S:[l,r]区间0/1互换
成段覆盖的操作很简单,比较特殊的就是区间0/1互换这个操作,我们可以称之为异或操作
很明显我们可以知道这个性质:当一个区间被覆盖后,不管之前有没有异或标记都没有意义了
所以当一个节点得到覆盖标记时把异或标记清空
而当一个节点得到异或标记的时候,先判断覆盖标记,如果是0或1,直接改变一下覆盖标记,不然的话改变异或标记
开区间闭区间只要数字乘以2就可以处理(偶数表示端点,奇数表示两端点间的区间)
线段树功能:update:成段替换,区间异或 query:简单hash
#include <cstdio>
#include <cstring>
#include <cctype>
#include <algorithm>
using namespace std;
#define lson l , m , rt << 1
#define rson m + 1 , r , rt << 1 | 1
const int maxn = 131072;
bool hash[maxn+1];
int cover[maxn<<2];
int XOR[maxn<<2];
void FXOR(int rt) {
if (cover[rt] != -1) cover[rt] ^= 1;
else XOR[rt] ^= 1;
}
void PushDown(int rt) {
if (cover[rt] != -1) {
cover[rt<<1] = cover[rt<<1|1] = cover[rt];
XOR[rt<<1] = XOR[rt<<1|1] = 0;
cover[rt] = -1;
}
if (XOR[rt]) {
FXOR(rt<<1);
FXOR(rt<<1|1);
XOR[rt] = 0;
}
}
void update(char op,int L,int R,int l,int r,int rt) {
if (L <= l && r <= R) {
if (op == 'U') {
cover[rt] = 1;
XOR[rt] = 0;
} else if (op == 'D') {
cover[rt] = 0;
XOR[rt] = 0;
} else if (op == 'C' || op == 'S') {
FXOR(rt);
}
return ;
}
PushDown(rt);
int m = (l + r) >> 1;
if (L <= m) update(op , L , R , lson);
else if (op == 'I' || op == 'C') {
XOR[rt<<1] = cover[rt<<1] = 0;
}
if (m < R) update(op , L , R , rson);
else if (op == 'I' || op == 'C') {
XOR[rt<<1|1] = cover[rt<<1|1] = 0;
}
}
void query(int l,int r,int rt) {
if (cover[rt] == 1) {
for (int it = l ; it <= r ; it ++) {
hash[it] = true;
}
return ;
} else if (cover[rt] == 0) return ;
if (l == r) return ;
PushDown(rt);
int m = (l + r) >> 1;
query(lson);
query(rson);
}
int main() {
cover[1] = XOR[1] = 0;
char op , l , r;
int a , b;
while ( ~scanf("%c %c%d,%d%c\n",&op , &l , &a , &b , &r) ) {
a <<= 1 , b <<= 1;
if (l == '(') a ++;
if (r == ')') b --;
if (a > b) {
if (op == 'C' || op == 'I') {
cover[1] = XOR[1] = 0;
}
} else update(op , a , b , 0 , maxn , 1);
}
query(0 , maxn , 1);
bool flag = false;
int s = -1 , e;
for (int i = 0 ; i <= maxn ; i ++) {
if (hash[i]) {
if (s == -1) s = i;
e = i;
} else {
if (s != -1) {
if (flag) printf(" ");
flag = true;
printf("%c%d,%d%c",s&1?'(':'[' , s>>1 , (e+1)>>1 , e&1?')':']');
s = -1;
}
}
}
if (!flag) printf("empty set");
puts("");
return 0;
}
练习
poj1436 Horizontally Visible Segments
poj2991 Crane
Another LCIS
Bracket Sequence
区间合并
题意:1 a:询问是不是有连续长度为a的空房间,有的话住进最左边
2 a b:将[a,a+b-1]的房间清空
思路:记录区间中最长的空房间
线段树操作:update:区间替换 query:询问满足条件的最左断点
#include <cstdio>
#include <cstring>
#include <cctype>
#include <algorithm>
using namespace std;
#define lson l , m , rt << 1
#define rson m + 1 , r , rt << 1 | 1
const int maxn = 55555;
int lsum[maxn<<2] , rsum[maxn<<2] , msum[maxn<<2];
int cover[maxn<<2];
void PushDown(int rt,int m) {
if (cover[rt] != -1) {
cover[rt<<1] = cover[rt<<1|1] = cover[rt];
msum[rt<<1] = lsum[rt<<1] = rsum[rt<<1] = cover[rt] ? 0 : m - (m >> 1);
msum[rt<<1|1] = lsum[rt<<1|1] = rsum[rt<<1|1] = cover[rt] ? 0 : (m >> 1);
cover[rt] = -1;
}
}
void PushUp(int rt,int m) {
lsum[rt] = lsum[rt<<1];
rsum[rt] = rsum[rt<<1|1];
if (lsum[rt] == m - (m >> 1)) lsum[rt] += lsum[rt<<1|1];
if (rsum[rt] == (m >> 1)) rsum[rt] += rsum[rt<<1];
msum[rt] = max(lsum[rt<<1|1] + rsum[rt<<1] , max(msum[rt<<1] , msum[rt<<1|1]));
}
void build(int l,int r,int rt) {
msum[rt] = lsum[rt] = rsum[rt] = r - l + 1;
cover[rt] = -1;
if (l == r) return ;
int m = (l + r) >> 1;
build(lson);
build(rson);
}
void update(int L,int R,int c,int l,int r,int rt) {
if (L <= l && r <= R) {
msum[rt] = lsum[rt] = rsum[rt] = c ? 0 : r - l + 1;
cover[rt] = c;
return ;
}
PushDown(rt , r - l + 1);
int m = (l + r) >> 1;
if (L <= m) update(L , R , c , lson);
if (m < R) update(L , R , c , rson);
PushUp(rt , r - l + 1);
}
int query(int w,int l,int r,int rt) {
if (l == r) return l;
PushDown(rt , r - l + 1);
int m = (l + r) >> 1;
if (msum[rt<<1] >= w) return query(w , lson);
else if (rsum[rt<<1] + lsum[rt<<1|1] >= w) return m - rsum[rt<<1] + 1;
return query(w , rson);
}
int main() {
int n , m;
scanf("%d%d",&n,&m);
build(1 , n , 1);
while (m --) {
int op , a , b;
scanf("%d",&op);
if (op == 1) {
scanf("%d",&a);
if (msum[1] < a) puts("0");
else {
int p = query(a , 1 , n , 1);
printf("%d\n",p);
update(p , p + a - 1 , 1 , 1 , n , 1);
}
} else {
scanf("%d%d",&a,&b);
update(a , a + b - 1 , 0 , 1 , n , 1);
}
}
return 0;
}
练习
hdu3308 LCIS
hdu3397 Sequence operation
hdu2871 Memory Control
hdu1540 Tunnel Warfare
CF46-D Parking Lot
扫描线
这类题目需要将一些操作排序,然后从左到右用一根扫描线(当然是在我们脑子里)扫过去最典型的就是矩形面积并,周长并等题
题意:矩形面积并
思路:浮点数先要离散化;然后把矩形分成两条边,上边和下边,对横轴建树,然后从下到上扫描上去,用cnt表示该区间下边比上边多几个,sum代表该区间内被覆盖的线段的长度总和
这里线段树的一个结点并非是线段的一个端点,而是该端点和下一个端点间的线段,所以题目中r+1,r-1的地方可以自己好好的琢磨一下
#include <cstdio>
#include <cstring>
#include <cctype>
#include <algorithm>
using namespace std;
#define lson l , m , rt << 1
#define rson m + 1 , r , rt << 1 | 1
const int maxn = 2222;
int cnt[maxn << 2];
double sum[maxn << 2];
double X[maxn];
struct Seg {
double h , l , r;
int s;
Seg(){}
Seg(double a,double b,double c,int d) : l(a) , r(b) , h(c) , s(d) {}
bool operator < (const Seg &cmp) const {
return h < cmp.h;
}
}ss[maxn];
void PushUp(int rt,int l,int r) {
if (cnt[rt]) sum[rt] = X[r+1] - X[l];
else if (l == r) sum[rt] = 0;
else sum[rt] = sum[rt<<1] + sum[rt<<1|1];
}
void update(int L,int R,int c,int l,int r,int rt) {
if (L <= l && r <= R) {
cnt[rt] += c;
PushUp(rt , l , r);
return ;
}
int m = (l + r) >> 1;
if (L <= m) update(L , R , c , lson);
if (m < R) update(L , R , c , rson);
PushUp(rt , l , r);
}
int Bin(double key,int n,double X[]) {
int l = 0 , r = n - 1;
while (l <= r) {
int m = (l + r) >> 1;
if (X[m] == key) return m;
if (X[m] < key) l = m + 1;
else r = m - 1;
}
return -1;
}
int main() {
int n , cas = 1;
while (~scanf("%d",&n) && n) {
int m = 0;
while (n --) {
double a , b , c , d;
scanf("%lf%lf%lf%lf",&a,&b,&c,&d);
X[m] = a;
ss[m++] = Seg(a , c , b , 1);
X[m] = c;
ss[m++] = Seg(a , c , d , -1);
}
sort(X , X + m);
sort(ss , ss + m);
int k = 1;
for (int i = 1 ; i < m ; i ++) {
if (X[i] != X[i-1]) X[k++] = X[i];
}
memset(cnt , 0 , sizeof(cnt));
memset(sum , 0 , sizeof(sum));
double ret = 0;
for (int i = 0 ; i < m - 1 ; i ++) {
int l = Bin(ss[i].l , k , X);
int r = Bin(ss[i].r , k , X) - 1;
if (l <= r) update(l , r , ss[i].s , 0 , k - 1, 1);
ret += sum[1] * (ss[i+1].h - ss[i].h);
}
printf("Test case #%d\nTotal explored area: %.2lf\n\n",cas++ , ret);
}
return 0;
}
题意:矩形周长并
思路:与面积不同的地方是还要记录竖的边有几个(numseg记录),并且当边界重合的时候需要合并(用lbd和rbd表示边界来辅助)
线段树操作:update:区间增减 query:直接取根节点的值
#include <cstdio>
#include <cstring>
#include <cctype>
#include <algorithm>
using namespace std;
#define lson l , m , rt << 1
#define rson m + 1 , r , rt << 1 | 1
const int maxn = 22222;
struct Seg{
int l , r , h , s;
Seg() {}
Seg(int a,int b,int c,int d):l(a) , r(b) , h(c) , s(d) {}
bool operator < (const Seg &cmp) const {
if (h == cmp.h) return s > cmp.s;
return h < cmp.h;
}
}ss[maxn];
bool lbd[maxn<<2] , rbd[maxn<<2];
int numseg[maxn<<2];
int cnt[maxn<<2];
int len[maxn<<2];
void PushUP(int rt,int l,int r) {
if (cnt[rt]) {
lbd[rt] = rbd[rt] = 1;
len[rt] = r - l + 1;
numseg[rt] = 2;
} else if (l == r) {
len[rt] = numseg[rt] = lbd[rt] = rbd[rt] = 0;
} else {
lbd[rt] = lbd[rt<<1];
rbd[rt] = rbd[rt<<1|1];
len[rt] = len[rt<<1] + len[rt<<1|1];
numseg[rt] = numseg[rt<<1] + numseg[rt<<1|1];
if (lbd[rt<<1|1] && rbd[rt<<1]) numseg[rt] -= 2;//两条线重合
}
}
void update(int L,int R,int c,int l,int r,int rt) {
if (L <= l && r <= R) {
cnt[rt] += c;
PushUP(rt , l , r);
return ;
}
int m = (l + r) >> 1;
if (L <= m) update(L , R , c , lson);
if (m < R) update(L , R , c , rson);
PushUP(rt , l , r);
}
int main() {
int n;
while (~scanf("%d",&n)) {
int m = 0;
int lbd = 10000, rbd = -10000;
for (int i = 0 ; i < n ; i ++) {
int a , b , c , d;
scanf("%d%d%d%d",&a,&b,&c,&d);
lbd = min(lbd , a);
rbd = max(rbd , c);
ss[m++] = Seg(a , c , b , 1);
ss[m++] = Seg(a , c , d , -1);
}
sort(ss , ss + m);
int ret = 0 , last = 0;
for (int i = 0 ; i < m ; i ++) {
if (ss[i].l < ss[i].r) update(ss[i].l , ss[i].r - 1 , ss[i].s , lbd , rbd - 1 , 1);
ret += numseg[1] * (ss[i+1].h - ss[i].h);
ret += abs(len[1] - last);
last = len[1];
}
printf("%d\n",ret);
}
return 0;
}
练习
hdu3265 Posters
hdu3642 Get The Treasury
poj2482 Stars in Your Window
poj2464 Brownie Points II
hdu3255 Farming
ural1707 Hypnotoad’s Secret
uva11983 Weird Advertisement
多颗线段树问题
维护一个有序数列{An},有三种操作:
1、添加一个元素。
2、删除一个元素。
3、求数列中下标%5 = 3的值的和。
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int maxn=100002;
#define lson l , m , rt << 1
#define rson m + 1 , r , rt << 1 | 1
__int64 sum[maxn<<2][6];
int cnt[maxn << 2];
char op[maxn][20];
int a[maxn];
int X[maxn];
void PushUp(int rt)
{
cnt[rt] = cnt[rt<<1] + cnt[rt<<1|1];
int offset = cnt[rt<<1];
for(int i = 0; i < 5; ++i)
{
sum[rt][i] = sum[rt<<1][i];
}
for(int i = 0; i < 5; ++i)
{
sum[rt][(i + offset) % 5] += sum[rt<<1|1][i];
}
}
void Build(int l, int r, int rt)
{ /*此题Build完全可以用一个memset代替*/
cnt[rt] = 0;
for(int i = 0; i < 5; ++i) sum[rt][i] = 0;
if( l == r ) return;
int m = ( l + r )>>1;
Build(lson);
Build(rson);
}
void Updata(int p, int op, int l, int r, int rt)
{
if( l == r )
{
cnt[rt] = op;
sum[rt][1] = op * X[l-1];
return ;
}
int m = ( l + r ) >> 1;
if(p <= m)
Updata(p, op, lson);
else
Updata(p, op, rson);
PushUp(rt);
}
int main()
{
int n;
while(scanf("%d", &n) != EOF)
{
int nn = 0;
for(int i = 0; i < n; ++i)
{
scanf("%s", &op[i]);
if(op[i][0] != 's')
{
scanf("%d", &a[i]);
if(op[i][0] == 'a')
{
X[nn++] = a[i];
}
}
}
sort(X,X+nn);/*unique前必须sort*/
nn = unique(X, X + nn) - X; /*去重并得到总数*/
Build(1, nn, 1);
for(int i = 0; i < n; ++i)
{
int pos = upper_bound(X, X+nn, a[i]) - X; /* hash */
if(op[i][0] == 'a')
{
Updata(pos, 1, 1, nn, 1);
}
else if(op[i][0] == 'd')
{
Updata(pos, 0, 1, nn, 1);
}
else printf("%I64d\n",sum[1][3]);
}
}
return 0;
}
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<set>
#include<vector>
#include<string>
#include<map>
#define eps 1e-7
#define LL long long
#define N 500005
#define zero(a) fabs(a)<eps
#define lson step<<1
#define rson step<<1|1
#define MOD 1234567891
#define pb(a) push_back(a)
using namespace std;
struct Node{
int left,right,add[55],sum;
int mid(){return (left+right)/2;}
}L[4*N];
int a[N],n,b[11][11];
void Bulid(int step ,int l,int r){
L[step].left=l;
L[step].right=r;
L[step].sum=0;
memset(L[step].add,0,sizeof(L[step].add));
if(l==r) return ;
Bulid(lson,l,L[step].mid());
Bulid(rson,L[step].mid()+1,r);
}
void push_down(int step){
if(L[step].sum){
L[lson].sum+=L[step].sum;
L[rson].sum+=L[step].sum;
L[step].sum=0;
for(int i=0;i<55;i++){
L[lson].add[i]+=L[step].add[i];
L[rson].add[i]+=L[step].add[i];
L[step].add[i]=0;
}
}
}
void update(int step,int l,int r,int num,int i,int j){
if(L[step].left==l&&L[step].right==r){
L[step].sum+=num;
L[step].add[b[i][j]]+=num;
return;
}
push_down(step);
if(r<=L[step].mid()) update(lson,l,r,num,i,j);
else if(l>L[step].mid()) update(rson,l,r,num,i,j);
else {
update(lson,l,L[step].mid(),num,i,j);
update(rson,L[step].mid()+1,r,num,i,j);
}
}
int query(int step,int pos){
if(L[step].left==L[step].right){
int tmp=0;
for(int i=1;i<=10;i++) tmp+=L[step].add[b[i][pos%i]];
return a[L[step].left]+tmp;
}
push_down(step);
if(pos<=L[step].mid()) return query(lson,pos);
else return query(rson,pos);
}
int main(){
int cnt=0;
for(int i=1;i<=10;i++) for(int j=0;j<i;j++) b[i][j]=cnt++;
while(scanf("%d",&n)!=EOF){
for(int i=1;i<=n;i++) scanf("%d",&a[i]);
Bulid(1,1,n);
int q,d;
scanf("%d",&q);
while(q--){
int k,l,r,m;
scanf("%d",&k);
if(k==2){
scanf("%d",&m);
printf("%d\n",query(1,m));
}
else{
scanf("%d%d%d%d",&l,&r,&d,&m);
update(1,l,r,m,d,l%d);
}
}
}
return 0;
}
线段树与其他结合练习(欢迎大家补充):
- hdu3954 Level up
- hdu4027 Can you answer these queries?
- hdu3333 Turing Tree
- hdu3874 Necklace
- hdu3016 Man Down
- hdu3340 Rain in ACStar
- zju3511 Cake Robbery
- UESTC1558 Charitable Exchange
- CF85-D Sum of Medians
- spojGSS2 Can you answer these queries II