线段树(原理,模板)

线段树

线段树是用来维护 区间信息 的数据结构

它可以在 O ( log ⁡ n ) O(\log n) O(logn) 的时间复杂度内实现单点修改、区间修改、区间查询(区间求和,求区间最大值,求区间最小值)等操作。

信息是否可以由线段树来维护,要看一段区间的信息,是否可以由它的子区间推导而来,显然加法,求最值都是满足这种性质的。从离散数学的角度来说,可以认为是满足幺半群性质的信息。对于有些复杂的题目,单一的信息可能并不能满足这一性质,而需要多个信息共同维护才能满足。

线段树的形态

将一段区间看做一个结点,长度为 10 的数组可以生成如下线段树。

父结点表示整个区间,将其划分为左右两个区间作为孩子,不断递归划分,直到区间长度为 1。

img

可以看到,线段树接近于一棵满二叉树,所以可以像堆一样,用一维数组来存储(即,若某一结点下标为 u,则其父结点下标为 u / 2,左孩子下标为 2 * u,右孩子下标为 2 * u + 1)。

一个长度为 n n n 的数组,所建立的线段树,倒数第二层接近有 n n n 个结点,将其以上看作满二叉树,则二叉树的高度为 log ⁡ 2 n + 1 \log_2n+1 log2n+1 ,共有 2 log ⁡ 2 n + 1 − 1 2^{\log_2n+1}-1 2log2n+11 个结点,化简得 2 n − 1 2n-1 2n1,最后一层最坏情况是倒数第二层的两倍,看作有 2 n 2n 2n 个点,所以估计最坏情况有 4 n − 1 4n-1 4n1 个点,所以我们开大小为 4 n 4n 4n 的数组。


  • 线段树一共有 5 个操作:
    • pushup 用子节点的信息来更新父结点
    • pushdown 向下分配懒惰标记(用于区间修改)
    • build 初始化线段树
    • query 查询
    • modify 修改

pushup 需要根据自己维护的区间信息来编写:如维护区间最大值,则父结点的区间最大值就是max(左孩子区间最大值, 右孩子区间最大值);如维护区间和,父结点区间和 = 左孩子区间和 + 右孩子区间和。

build 递归建树,基本模板:

注意左右子树初始化完成后需要 pushup 当前结点。

void build(int u, int l, int r) {
    tr[u] = {l, r};
    if (l == r) return;
    int mid = (l + r) / 2;
    build(2 * u, l, mid);
    build(2 * u + 1, mid + 1, r);
    pushup(u);
}

query 查询区间

如图,如果我们要查询 [ 5 , 9 ] [5, 9] [5,9] 的信息,则最终需要 [ 5 ] , [ 6 , 8 ] , [ 9 ] [5],[6,8],[9] [5],[6,8],[9] 三个区间合并求得。(阴影标注的是递归需要经过的结点)

img

我们从根结点开始查询,要查询的区间和当前结点的孩子有下面三种情况:

  • 只跟左孩子有交集:则继续递归左孩子,不递归右孩子
  • 只跟右孩子有交集:则继续递归右孩子,不递归左孩子
  • 跟两个孩子都有交集:继续递归左右两个孩子

如果当前结点的区间完全在要查询的区间的内部,则直接返回当前结点的信息。

注意:不存在和两个孩子都没有交集的情况,因为如果和两个孩子都没有交集,则意味着和当前结点也没有交集,而要查询的区间一定和根结点有交集,递归只会向下找其和要查询的区间有交集的孩子,所以当前结点不可能和要查询的区间没有交集。

modify :单点修改只需要递归向下搜索,同时使用 pushup 回溯即可。

线段树代码(单点修改、区间查询)

一个基本的线段树有 4 个操作,可以支持区间查询和单点修改

以维护 区间最大值 为例,有如下代码:

  • tr[i]:编号为 i 的结点表示的区间为 [l, r],值为 v,根结点编号为 1
  • build:从上至下初始化线段树各个结点的区间,每个区间的值我们没有更新,因为这里默认原数组元素全为 0。
  • query:查询 [l,r] 区间,如果当前结点的区间包含在 [l,r] 里面,那么直接返回值即可,否则递归左右结点中和 [l,r] 有交集的区间。返回查询结果(max)。
  • modify:单点修改,将下标 x 位置修改为 v。先递归搜索 x 所在的区间,找到叶子结点直接修改即可,回溯的时候调用 pushup 函数来用子结点更新父结点。
const int N = 100010;

struct Node {
    int l, r;
    int v;
}tr[4 * N];

void pushup(int u) {
    tr[u].v = max(tr[2 * u].v, tr[2 * u + 1].v);
}

void build(int u, int l, int r) {
    tr[u] = {l, r};
    if (l == r) return;
    int mid = (l + r) / 2;
    build(2 * u, l, mid);
    build(2 * u + 1, mid + 1, r);
}

int query(int u, int l, int r) {
    if (l <= tr[u].l && tr[u].r <= r) return tr[u].v;
    int mid = (tr[u].l + tr[u].r) / 2;
    int v = 0;
    if (l <= mid) v = query(2 * u, l, r);
    if (r > mid) v = max(v, query(2 * u + 1, l, r));
    return v;
}

void modify(int u, int x, int v) {
    if (tr[u].l == x && tr[u].r == x) tr[u].v = v;
    else {
        int mid = (tr[u].l + tr[u].r) / 2;
        if (x <= mid) modify(2 * u, x, v);
        else modify(2 * u + 1, x, v);
        pushup(u);
    }
}

懒惰标记与区间修改

懒惰标记可以通过延迟对结点的修改,减少操作次数。

当我们要执行修改时,可以使用 modify 将当前结点的信息进行更新,但不再向下递归,而是给当前结点打上懒惰标记,该标记表示,当前结点以下的所有子节点(不包括当前结点)都需要更新。当下一次访问到带有标记的结点的孩子之前,才对结点的孩子进行实质性的修改。在这样的设定下,根结点和当前结点的信息一定是最新的(正确的)。当然也可以让懒惰标记包括当前结点,这里所给出的是前一种代码。

以维护 区间和 为例,我们的懒惰标记就设置为 add,它是一个整型,表示该结点所表示的区间的每个元素都要加 add,其下的所有子节点都需要更新。

  • pushdown 用来下放懒惰标记,就是将当前结点的懒惰标记叠加到左右孩子的懒惰标记上,清空当前结点的懒惰标记,并对左右孩子进行实质性修改。

  • modify:将 [l, r] 区间的元素加上 d

    • 如果当前区间在 [l, r] 区间内部,则直接修改当前区间,并打上懒惰标记,不向下递归。
    • 否则,因为即将访问到需要进行实质性修改的子结点,所以需要先将当前结点的懒惰标记下放。否则就会导致 pushup 使用错误的子结点的信息来更新当前结点。

总结:每次(modify、query)递归子结点之前都要 pushdown,所有修改操作(build、modify)递归完子结点之后都要 pushup

const int N = 100010;

int w[N]; // 原数组
struct Node {
    int l, r;
    int sum, add;
}tr[4 * N];

void pushup(int u) {
    tr[u].sum = tr[2 * u].sum + tr[2 * u + 1].sum;
}

void pushdown(int u) {
    Node& root = tr[u], &left = tr[2 * u], &right = tr[2 * u + 1];
    if (root.add) {
        left.add += root.add;
        right.add += root.add;
        left.sum += (left.r - left.l + 1) * root.add;
        right.sum += (right.r - right.l + 1) * root.add;
        root.add = 0;
    }
}

void build(int u, int l, int r) {
    if (l == r) tr[u] = {l, r, w[l], 0};
    else {
        tr[u] = {l, r};
        int mid = (l + r) / 2;
        build(2 * u, l, mid);
        build(2 * u + 1, mid + 1, r);
        pushup(u);
    }
}

void modify(int u, int l, int r, int d) {
    if (l <= tr[u].l && tr[u].r <= r) {
        tr[u].sum += (tr[u].r - tr[u].l + 1) * d;
        tr[u].add += d;
    } else {
        pushdown(u);
        int mid = (tr[u].l + tr[u].r) / 2;
        if (l <= mid) modify(2 * u, l, r, d);
        if (r > mid) modify(2 * u + 1, l, r, d);
        pushup(u);
    }
}

int query(int u, int l, int r) {
    if (l <= tr[u].l && tr[u].r <= r) return tr[u].sum;
    pushdown(u);
    int mid = (tr[u].l + tr[u].r) / 2;
    int sum = 0;
    if (l <= mid) sum += query(2 * u, l, r);
    if (r > mid) sum += query(2 * u + 1, l, r);
    return sum;
}

树状数组与区间修改

上一节 树状数组(代码模板和原理详解)_世真的博客-CSDN博客 讲到,树状数组只支持单点修改和区间查询,不支持区间修改。

但是如果题目让我们对一个数组进行区间修改和求区间和,其实也可以使用树状数组。不同于线段树的是,线段树可以直接维护这个数组,而树状数组需要维护它的差分数组。

对差分数组的单点修改等价于对原数组的区间修改。

但是这又带来一个问题:对差分数组的区间求和,相当于求原数组的单点值,而我们要的是对原数组的区间求和,这怎么解决呢?

设原数组 a a a 内的一个前缀区间的元素为 a 1 , a 2 , ⋯   , a x a_1,a_2,\cdots,a_x a1,a2,,ax,其对应的差分为 b 1 , b 2 , ⋯   , b x b_1,b_2,\cdots,b_x b1,b2,,bx


∑ i = 1 x a i = ∑ i = 1 x ∑ j = 1 i b j \sum_{i=1}^xa_i=\sum_{i=1}^x\sum^i_{j=1}b_j i=1xai=i=1xj=1ibj
把各项列出来(黑色部分):

img

将三角补全成一个完整的矩阵(红色部分)

黑色部分等于整个矩阵的和减去红色部分
( b 1 + b 2 + b 3 + ⋯ + b x ) × ( x + 1 ) − ( b 1 + 2 b 2 + 3 b 3 + ⋯ + x b x ) (b_1+b_2+b_3+\cdots+b_x)\times(x+1)-(b_1+2b_2+3b_3+\cdots+xb_x) (b1+b2+b3++bx)×(x+1)(b1+2b2+3b3++xbx)
这个式子就是用 b i b_i bi 的前缀和,乘 x + 1 x+1 x+1 后减去 i b i ib_i ibi 的前缀和。

所以我们需要维护两个数组,分别是差分数组 b i b_i bi i b i ib_i ibi 数组。

代码如下:

const int N = 100010;

int n, m;
int a[N];
int tr1[N];
int tr2[N];

int lowbit(int x) {
    return x & -x;
}

void add(int tr[], int x, int c) {
    for (int i = x; i <= n; i += lowbit(i)) tr[i] += c;
}

int sum(int tr[], int x) {
    int res = 0;
    for (int i = x; i; i -= lowbit(i)) res += tr[i];
    return res;
}

int prefix_sum(int x) {
    return sum(tr1, x) * (x + 1) - sum(tr2, x);
}

int range_sum(int l, int r) {
    return prefix_sum(r) - prefix_sum(l - 1);
}

void range_add(int l, int r, int c) {
    add(tr1, l, c);
    add(tr1, r + 1, -c);
    add(tr2, l, l * c);
    add(tr2, r + 1, (r + 1) * -c);
}
  • 2
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
下面是一个简单的线段树的 Python 实现模板: ```python class SegmentTree: def __init__(self, arr): self.arr = arr self.tree = [0] * (4 * len(arr)) self.build(0, 0, len(arr) - 1) def build(self, node, start, end): if start == end: self.tree[node] = self.arr[start] else: mid = (start + end) // 2 left_child = 2 * node + 1 right_child = 2 * node + 2 self.build(left_child, start, mid) self.build(right_child, mid + 1, end) self.tree[node] = self.tree[left_child] + self.tree[right_child] def query(self, node, start, end, left, right): # 区间完全包含在查询区间内 if left <= start and right >= end: return self.tree[node] # 区间完全不在查询区间内 if end < left or start > right: return 0 mid = (start + end) // 2 left_child = 2 * node + 1 right_child = 2 * node + 2 return self.query(left_child, start, mid, left, right) + self.query(right_child, mid + 1, end, left, right) def update(self, node, start, end, index, value): if start == end: self.arr[index] = value self.tree[node] = value else: mid = (start + end) // 2 left_child = 2 * node + 1 right_child = 2 * node + 2 if start <= index and index <= mid: self.update(left_child, start, mid, index, value) else: self.update(right_child, mid + 1, end, index, value) self.tree[node] = self.tree[left_child] + self.tree[right_child] ``` 使用这个模板,可以通过以下步骤来构建和使用线段树: 1. 创建一个 SegmentTree 对象,并传入原始数组作为参数。 2. 可以使用 `query` 方法来查询某个区间的和,传入查询区间的左右边界。 3. 可以使用 `update` 方法来更新原始数组中的某个元素,传入元素的索引和新的值。 注意,这只是一个简单的线段树模板,可以根据具体问题的需求进行适当修改和扩展。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

世真

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值