yolact模型复现

本文档详细介绍了如何在PyTorch环境中配置和运行Yolact对象检测模型。首先,从GitHub下载Yolact代码库和预训练模型。接着,针对3060ti显卡和CUDA 11.6环境配置Python 3.7。然后,下载并编译DCNv2库。最后,通过运行eval.py脚本,使用预设参数对自定义测试图像进行对象检测,展示复现结果。
摘要由CSDN通过智能技术生成

1.先去github官网上下载yolact代码

https://github.com/dbolya/yolact

再下载模型

下载模型:简书 (jianshu.com),先新建一个文件weights,将下载好的yolact_base_54_8000000.pth放到该文件中,在准备一张测试图片,这样准备工作就好了,下图是我的测试图片

 

2.配置环境

这步最重要,我的显卡是3060ti,cuda11.6,python=3.7

对于复现经典的 PyTorch 模型,你可以按照以下步骤进行操作: 1. 确定要复现的经典模型:选择你想要复现的经典模型,可以是在计算机视觉、自然语言处理或其他领域中广泛应用的模型,例如 AlexNet、VGG、ResNet 等。 2. 收集模型的相关论文和代码:查找并阅读原始论文,以了解模型的具体结构和训练方法。同时,搜索已经实现的代码库或者 GitHub 上的开源项目,以获取相关的参考代码。 3. 创建 PyTorch 模型:根据论文中描述的模型结构,使用 PyTorch 创建一个对应的模型类。这包括定义模型的网络层、初始化权重等操作。 4. 实现模型训练:根据论文中描述的训练方法,实现相应的训练步骤。这可能包括数据预处理、损失函数定义、优化器选择以及训练循环等。 5. 数据准备:准备用于训练和测试模型的数据集。这可能涉及数据下载、数据预处理、数据划分等。 6. 训练模型:使用准备好的数据集对模型进行训练。根据需要,可以设置训练超参数、学习率调度器等。 7. 模型评估:使用测试集或交叉验证集对训练好的模型进行评估。可以计算准确率、损失值等指标。 8. 模型优化(可选):根据需要,尝试改进模型的性能。这可能包括调整超参数、尝试不同的优化器、增加正则化等。 9. 结果分析:分析模型的性能和训练过程,比较实现的模型与原论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

dazhuangba

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值