目录
前言
通过运用python中的pyecharts库,可以将我们所获得的数据以图形化的方式展现在我们面前,让我们更方便以及更快速的分析我们获得的数据。
本文章所使用的雷达图在显示各维度数据的对比情况的同时,还可以对全部维度的整体情况有一个直观的展示。加以时间轴对象的结合,可以使不同日期下的数据展示在同一个图形上。
一、导入所需相应的python数据库
分别是数据分析库、pyecharts配置项库、pyecharts.charts图形库。
import pandas as pd
import pyecharts.options as opts
from pyecharts.charts import Radar
from pyecharts.charts import Pie, Timeline
二、导入获取的数据,并使用loc条件查询方法获取部分数据
以下是我在NBA中国官方网站获取的数据(数据来源:NBA中国官方网站 | 球员数据)
data = pd.read_excel(r'stephen_curry.xlsx',index_col="赛季")
data
list = data.loc[[2009, 2010, 2011, 2012, 2013],["场均助攻", "场均得分", "场均抢断", "场均盖帽", "场均篮板"]]
list
三、建立主体代码
因为这里要传入多组数据,所以我将主体代码放在了函数中。
def data_list(y):
c = (
Radar()
.add_schema(
schema=[
opts.RadarIndicatorItem(name="场均助攻", max_=10),
opts.RadarIndicatorItem(name="场均得分", max_=30),
opts.RadarIndicatorItem(name="场均抢断", max_=2),
opts.RadarIndicatorItem(name="场均盖帽", max_=0.5),
opts.RadarIndicatorItem(name="场均篮板", max_=5),
],
splitarea_opt=opts.SplitAreaOpts(
is_show=True,
areastyle_opts=opts.AreaStyleOpts(opacity=1)
),
textstyle_opts=opts.TextStyleOpts(color="black"),
)