[数据可视化] 通过使用雷达图与时间轴对象Timeline组合展示数据

本文介绍如何使用Python的pyecharts库结合雷达图和时间轴Timeline进行数据可视化,展示不同日期下的多组数据。通过设置雷达图的配置项和Timeline的基础配置,实现动态展示数据变化,适用于分析大量复杂数据。
摘要由CSDN通过智能技术生成

目录

前言

一、导入所需相应的python数据库

二、导入获取的数据,并使用loc条件查询方法获取部分数据

三、建立主体代码

(1)设置各数据维度的名称及峰值。

 (2)设置间断颜色

 (3)设置各维度名称的字体颜色

 (4)将中心点数据添加到雷达图中

 四、将雷达图添加到时间轴对象中,并渲染出图形

五、完整代码

六、拓展

(1)雷达图的各配置项

(2)时间轴对象Timeline部分基础配置项

总结


前言

通过运用python中的pyecharts库,可以将我们所获得的数据以图形化的方式展现在我们面前,让我们更方便以及更快速的分析我们获得的数据。

本文章所使用的雷达图在显示各维度数据的对比情况的同时,还可以对全部维度的整体情况有一个直观的展示。加以时间轴对象的结合,可以使不同日期下的数据展示在同一个图形上。

一、导入所需相应的python数据库

分别是数据分析库、pyecharts配置项库、pyecharts.charts图形库。

import pandas as pd

import pyecharts.options as opts

from pyecharts.charts import Radar

from pyecharts.charts import Pie, Timeline

二、导入获取的数据,并使用loc条件查询方法获取部分数据

以下是我在NBA中国官方网站获取的数据(数据来源:NBA中国官方网站 | 球员数据

data = pd.read_excel(r'stephen_curry.xlsx',index_col="赛季")
data

list = data.loc[[2009, 2010, 2011, 2012, 2013],["场均助攻", "场均得分", "场均抢断", "场均盖帽", "场均篮板"]]
list

三、建立主体代码

因为这里要传入多组数据,所以我将主体代码放在了函数中。

def data_list(y):
    c = (
        Radar()
        .add_schema(
            schema=[
                opts.RadarIndicatorItem(name="场均助攻", max_=10),
                opts.RadarIndicatorItem(name="场均得分", max_=30),
                opts.RadarIndicatorItem(name="场均抢断", max_=2),
                opts.RadarIndicatorItem(name="场均盖帽", max_=0.5),
                opts.RadarIndicatorItem(name="场均篮板", max_=5),
            ],
            splitarea_opt=opts.SplitAreaOpts(
                is_show=True, 
                areastyle_opts=opts.AreaStyleOpts(opacity=1)
            ),
            textstyle_opts=opts.TextStyleOpts(color="black"),
        )
     
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值