TFRecord格式存储数据与队列读取

Tensor Flow官方网站上提供三种读取数据的方法
1. 预加载数据:在Tensor Flow图中定义常量或变量来保存所有数据,将数据直接嵌到数据图中,当训练数据较大时,很消耗内存。

x1=tf.constant([0,1])
x2=tf.constant([1,0])
y=tf.add(x1,x2)

.2.填充数据:使用sess.run()的feed_dict参数,将Python产生的数据填充到后端,之前的MNIST数据集就是通过这种方法。也有消耗内存,数据类型转换耗时的缺点。
3. 从文件读取数据:从文件中直接读取,让队列管理器从文件中读取数据。分为两步
先把样本数据写入TFRecords二进制文件
再从队列中读取
TFRecord是TensorFlow提供的一种统一存储数据的二进制文件,能更好的利用内存,更方便的复制和移动,并且不需要单独的标记文件。下面通过代码来将MNIST转换成TFRecord的数据格式,其他数据集也类似。

#生成整数型的属性
def _int64_feature(value):
    return tf.train.Feature(int64_list=tf.train.Int64List(value=[value]))
#生成字符串型的属性
def _bytes_feature(value):
    return tf.train.Feature(bytes_list=tf.train.BytesList(value=[value]))
def convert_to(data_set,name):
    '''
    将数据填入到tf.train.Example的协议缓冲区(protocol buffer)中,将协议缓冲区序列
    化为一个字符串,通过tf.python_io.TFRecordWriter写入TFRecords文件   
    '''
    images=data_set.images
    labels=data_set.labels
    num_examples=data_set.num_examples
    if images.shape[0]!=num_examples:
        raise ValueError ('Imagessize %d does not match label size %d.'\
                          %(images.shape[0],num_examples))
    rows=images.shape[1]    #28
    cols=images.shape[2]    #28
    depth=images.shape[3]   #1 是黑白图像

    filename = os.path.join(FLAGS.directory, name + '.tfrecords')
    #使用下面语句就会将三个文件存储为一个TFRecord文件,当数据量较大时,最好将数据写入多个文件
    #filename="C:/Users/dbsdz/Desktop/TF练习/TFRecord"
    print('Writing',filename)
    writer=tf.python_io.TFRecordWriter(filename)
    for index in range(num_examples):
        image_raw=images[index].tostring()  #将图像矩阵化为一个字符串

        #写入协议缓冲区,height、width、depth、label编码成int 64类型,image——raw编码成二进制
        example=tf.train.Example(features=tf.train.Features(feature={
                'height':_int64_feature(rows),
                'width':_int64_feature(cols),
                'depth':_int64_feature(depth),
                'label':_int64_feature(int(labels[index])),
                'image_raw':_bytes_feature(image_raw)}))
        writer.write(example.SerializeToString())       #序列化字符串
    writer.close()

上面程序可以将MNIST数据集中所有的训练数据存储到三个TFRecord文件中。结果如下图这里写图片描述

从队列中TFRecord文件,过程分三步
1. 创建张量,从二进制文件中读取一个样本
2. 创建张量,从二进制文件中随机读取一个mini-batch
3. 把每一批张量传入网络作为输入节点
具体代码如下

def read_and_decode(filename_queue):     #输入文件名队列
    reader=tf.TFRecordReader()
    _,serialized_example=reader.read(filename_queue)
    #解析一个example,如果需要解析多个样例,使用parse_example函数
    features=tf.parse_single_example(   
            serialized_example,
            #必须写明feature里面的key的名称
            features={
            #TensorFlow提供两种不同的属性解析方法,一种方法是tf.FixedLenFeature,        
            #这种方法解析的结果为一个Tensor。另一个方法是tf.VarLenFeature,
            #这种方法得到的解析结果为SparseTensor,用于处理稀疏数据。
            #这里解析数据的格式需要和上面程序写入数据的格式一致
                    'image_raw':tf.FixedLenFeature([],tf.string),#图片是string类型
                      'label':tf.FixedLenFeature([],tf.int64),  #标记是int64类型
                      })
    #对于BytesList,要重新进行编码,把string类型的0维Tensor变成uint8类型的一维Tensor
    image = tf.decode_raw(features['image_raw'], tf.uint8)
    image.set_shape([IMAGE_PIXELS])
    #tensor("input/DecodeRaw:0",shape=(784,),dtype=uint8)

    #image张量的形状为:tensor("input/sub:0",shape=(784,),dtype=float32)
    image = tf.cast(image, tf.float32) * (1. / 255) - 0.5

    #把标记从uint8类型转换为int32类性
    #label张量的形状为tensor(“input/cast_1:0",shape=(),dtype=int32)
    label = tf.cast(features['label'], tf.int32)
    return image,label
def inputs(train,batch_size,num_epochs):
    #输入参数:
    #train:选择输入训练数据/验证数据
    #batch_size:训练的每一批有多少个样本
    #num_epochs:过几遍数据,设置为0/None表示永远训练下去
    '''
    返回结果: A tuple (images,labels)
    *images:类型为float,形状为【batch_size,mnist.IMAGE_PIXELS],范围【-0.5,0.5】。
    *label:类型为int32,形状为【batch_size],范围【0,mnist.NUM_CLASSES]
    注意tf.train.QueueRunner必须用tf.train.start_queue_runners()来启动线程

    '''
    if not num_epochs:num_epochs=None
    #获取文件路径,即./MNIST_data/train.tfrecords,./MNIST_data/validation.records
    filename=os.path.join(FLAGS.train_dir,TRAIN_FILE if train else VALIDATION_FILE)
    with tf.name_scope('input'):
        #tf.train.string_input_producer返回一个QueueRunner,里面有一个FIFOQueue
        filename_queue=tf.train.string_input_producer(#如果样本量很大,可以分成若干文件,把文件名列表传入
                [filename],num_epochs=num_epochs)     
        image,label=read_and_decode(filename_queue)
        #随机化example,并把它们整合成batch_size大小
        #tf.train.shuffle_batch生成了RandomShuffleQueue,并开启两个线程
        images,sparse_labels=tf.train.shuffle_batch(
                [image,label],batch_size=batch_size,num_threads=2,
                capacity=1000+3*batch_size,
                min_after_dequeue=1000) #留下一部分队列,来保证每次有足够的数据做随机打乱
        return images,sparse_labels

最后,构建一个三层的神经网络,包含两层卷积层以及一层使用SoftMax层,附上完整代码如下

# -*- coding: utf-8 -*-
"""
Created on Sun Apr  8 11:06:16 2018

@author: dbsdz

https://blog.csdn.net/xy2953396112/article/details/54929073
"""
import tensorflow as tf
import os
import time
import math
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)


# Basic model parameters as external flags.  
flags = tf.app.flags  
flags.DEFINE_float('learning_rate', 0.01, 'Initial learning rate.')  
flags.DEFINE_integer('hidden1', 128, 'Number of units in hidden layer 1.')  
flags.DEFINE_integer('hidden2', 32, 'Number of units in hidden layer 2.')  
flags.DEFINE_integer('batch_size', 100, 'Batch size.  '  
                     'Must divide evenly into the dataset sizes.')  
flags.DEFINE_string('train_dir', 'Mnist_data/', 'Directory to put the training data.')  
flags.DEFINE_string('directory', './MNIST_data',
                           'Directory to download data files and write the '
                           'converted result')
flags.DEFINE_integer('validation_size', 5000,
                            'Number of examples to separate from the training '
                            'data for the validation set.')
flags.DEFINE_integer('num_epochs',10,'num_epochs set')
FLAGS = tf.app.flags.FLAGS
IMAGE_SIZE = 28
IMAGE_PIXELS = IMAGE_SIZE * IMAGE_SIZE      #图片像素728
TRAIN_FILE = "train.tfrecords"
VALIDATION_FILE="validation.tfrecords"
#生成整数型的属性
def _int64_feature(value):
    return tf.train.Feature(int64_list=tf.train.Int64List(value=[value]))
#生成字符串型的属性
def _bytes_feature(value):
    return tf.train.Feature(bytes_list=tf.train.BytesList(value=[value]))
def convert_to(data_set,name):
    '''
    将数据填入到tf.train.Example的协议缓冲区(protocol buffer)中,将协议缓冲区序列
    化为一个字符串,通过tf.python_io.TFRecordWriter写入TFRecords文件   
    '''
    images=data_set.images
    labels=data_set.labels
    num_examples=data_set.num_examples
    if images.shape[0]!=num_examples:
        raise ValueError ('Imagessize %d does not match label size %d.'\
                          %(images.shape[0],num_examples))
    rows=images.shape[1]    #28
    cols=images.shape[2]    #28
    depth=images.shape[3]   #1 是黑白图像

    filename = os.path.join(FLAGS.directory, name + '.tfrecords')
    #使用下面语句就会将三个文件存储为一个TFRecord文件,当数据量较大时,最好将数据写入多个文件
    #filename="C:/Users/dbsdz/Desktop/TF练习/TFRecord"
    print('Writing',filename)
    writer=tf.python_io.TFRecordWriter(filename)
    for index in range(num_examples):
        image_raw=images[index].tostring()  #将图像矩阵化为一个字符串

        #写入协议缓冲区,height、width、depth、label编码成int 64类型,image——raw编码成二进制
        example=tf.train.Example(features=tf.train.Features(feature={
                'height':_int64_feature(rows),
                'width':_int64_feature(cols),
                'depth':_int64_feature(depth),
                'label':_int64_feature(int(labels[index])),
                'image_raw':_bytes_feature(image_raw)}))
        writer.write(example.SerializeToString())       #序列化字符串
    writer.close()


def inference(images, hidden1_units, hidden2_units):
  with tf.name_scope('hidden1'):
    weights = tf.Variable(
        tf.truncated_normal([IMAGE_PIXELS, hidden1_units],
                            stddev=1.0 / math.sqrt(float(IMAGE_PIXELS))),name='weights')
    biases = tf.Variable(tf.zeros([hidden1_units]),name='biases')
    hidden1 = tf.nn.relu(tf.matmul(images, weights) + biases)
  with tf.name_scope('hidden2'):
    weights = tf.Variable(
        tf.truncated_normal([hidden1_units, hidden2_units],
                            stddev=1.0 / math.sqrt(float(hidden1_units))),
        name='weights')
    biases = tf.Variable(tf.zeros([hidden2_units]),
                         name='biases')
    hidden2 = tf.nn.relu(tf.matmul(hidden1, weights) + biases)
  with tf.name_scope('softmax_linear'):
    weights = tf.Variable(
        tf.truncated_normal([hidden2_units,FLAGS.num_epochs],
                            stddev=1.0 / math.sqrt(float(hidden2_units))),name='weights')
    biases = tf.Variable(tf.zeros([FLAGS.num_epochs]),name='biases')
    logits = tf.matmul(hidden2, weights) + biases
  return logits
def lossFunction(logits, labels):
  labels = tf.to_int64(labels)
  cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(
      logits=logits, labels=labels, name='xentropy')
  loss = tf.reduce_mean(cross_entropy, name='xentropy_mean')
  return loss
def training(loss, learning_rate):
  tf.summary.scalar(loss.op.name, loss)
  optimizer = tf.train.GradientDescentOptimizer(learning_rate)
  global_step = tf.Variable(0, name='global_step', trainable=False)
  train_op = optimizer.minimize(loss, global_step=global_step)
  return train_op
def read_and_decode(filename_queue):     #输入文件名队列
    reader=tf.TFRecordReader()
    _,serialized_example=reader.read(filename_queue)
    #解析一个example,如果需要解析多个样例,使用parse_example函数
    features=tf.parse_single_example(   
            serialized_example,
            #必须写明feature里面的key的名称
            features={
            #TensorFlow提供两种不同的属性解析方法,一种方法是tf.FixedLenFeature,        
            #这种方法解析的结果为一个Tensor。另一个方法是tf.VarLenFeature,
            #这种方法得到的解析结果为SparseTensor,用于处理稀疏数据。
            #这里解析数据的格式需要和上面程序写入数据的格式一致
                    'image_raw':tf.FixedLenFeature([],tf.string),#图片是string类型
                      'label':tf.FixedLenFeature([],tf.int64),  #标记是int64类型
                      })
    #对于BytesList,要重新进行编码,把string类型的0维Tensor变成uint8类型的一维Tensor
    image = tf.decode_raw(features['image_raw'], tf.uint8)
    image.set_shape([IMAGE_PIXELS])
    #tensor("input/DecodeRaw:0",shape=(784,),dtype=uint8)

    #image张量的形状为:tensor("input/sub:0",shape=(784,),dtype=float32)
    image = tf.cast(image, tf.float32) * (1. / 255) - 0.5

    #把标记从uint8类型转换为int32类性
    #label张量的形状为tensor(“input/cast_1:0",shape=(),dtype=int32)
    label = tf.cast(features['label'], tf.int32)
    return image,label

def inputs(train,batch_size,num_epochs):
    #输入参数:
    #train:选择输入训练数据/验证数据
    #batch_size:训练的每一批有多少个样本
    #num_epochs:过几遍数据,设置为0/None表示永远训练下去
    '''
    返回结果: A tuple (images,labels)
    *images:类型为float,形状为【batch_size,mnist.IMAGE_PIXELS],范围【-0.5,0.5】。
    *label:类型为int32,形状为【batch_size],范围【0,mnist.NUM_CLASSES]
    注意tf.train.QueueRunner必须用tf.train.start_queue_runners()来启动线程

    '''
    if not num_epochs:num_epochs=None
    #获取文件路径,即./MNIST_data/train.tfrecords,./MNIST_data/validation.records
    filename=os.path.join(FLAGS.train_dir,TRAIN_FILE if train else VALIDATION_FILE)
    with tf.name_scope('input'):
        #tf.train.string_input_producer返回一个QueueRunner,里面有一个FIFOQueue
        filename_queue=tf.train.string_input_producer(#如果样本量很大,可以分成若干文件,把文件名列表传入
                [filename],num_epochs=num_epochs)     
        image,label=read_and_decode(filename_queue)
        #随机化example,并把它们整合成batch_size大小
        #tf.train.shuffle_batch生成了RandomShuffleQueue,并开启两个线程
        images,sparse_labels=tf.train.shuffle_batch(
                [image,label],batch_size=batch_size,num_threads=2,
                capacity=1000+3*batch_size,
                min_after_dequeue=1000) #留下一部分队列,来保证每次有足够的数据做随机打乱
        return images,sparse_labels
def run_training():
    with tf.Graph().as_default():
        #输入images和labels
        images,labels=inputs(train=True,batch_size=FLAGS.batch_size,
                             num_epochs=3)       #num_epochs就是训练的轮数 
        #构建一个从推理模型来预测数据的图
        logits=inference(images,FLAGS.hidden1,FLAGS.hidden2)
        loss=lossFunction(logits,labels)  #定义损失函数
        #Add to the Graph operations that train the model
        train_op=training(loss,FLAGS.learning_rate)
        #初始化参数,特别注意:string——input_producer内部创建了一个epoch计数变量
        #归入tf.graphkey.local_variables集合中,必须单独用initialize_local_variables()初始化
        init_op=tf.group(tf.global_variables_initializer(),
                         tf.local_variables_initializer())
        sess=tf.Session()
        sess.run(init_op)
        #Start input enqueue threads
        coord =tf.train.Coordinator()
        threads=tf.train.start_queue_runners(sess=sess,coord=coord)
        try:
            step=0
            while not coord.should_stop():  #进入永久循环
                start_time=time.time()
                _,loss_value=sess.run([train_op,loss])

                #每100次训练输出一次结果
                if step % 100 ==0:
                    duration=time.time()-start_time
                    print('Step %d: loss=%.2f (%.3f sec)'%(step,loss_value,duration))
                step+=1
        except tf.errors.OutOfRangeError:
            print('Done training for %d epochs,%d steps.'%(FLAGS.num_epochs,step))
        finally:
            coord.request_stop()#通知其他线程关闭
        coord.join(threads)
        sess.close()

def main(unused_argv):

    #获取数据
    data_sets=input_data.read_data_sets(FLAGS.directory,dtype=tf.uint8,reshape=False,
                                   validation_size=FLAGS.validation_size)

    #将数据转换成tf.train.Example类型,并写入TFRecords文件

    convert_to(data_sets.train,'train')

    convert_to(data_sets.validation,'validation')

    convert_to(data_sets.test,'test')
    print('convert  finished')
    run_training()

if __name__ == '__main__':
 tf.app.run()

运行结果如图
这里写图片描述
参考资料:TensorFlow实战Google深度学习框架
TensorFlow技术解析与实战

评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值