Colab下Imageai自定义模型训练和目标检测

本文运行再colab环境下

目录

本文运行再colab环境下

1.准备

a.库的安装

b.colab环境的准备

2.模型的训练

a.准备数据集

b.训练

 

3.通过模型进行目标检测

 

4.注意:


1.准备

a.库的安装

依赖项:opencv、1.15>=tensorflow>=1.4、keras,

pip install imagea

b.colab环境的准备

修改——笔记本设置——选择GPU

然后运行以下命令,更换tf版本

!sudo pip install tensorflow-gpu==1.13.1

否则导致报错

最后,代码执行程序——重新启动代码执行程序。准备完成。

 

 

2.模型的训练

a.准备数据集

每个是识别的图片最好200张以上

之后通过lableimage标记图片,标记图片时候路径不要含有中文,可以新建一个Images文件保存图片

图片和xml名字例如:image(1).png,image(1).xml

建立如下目录

└───dataset
    ├───train
    │   ├───annotations
    │   └───images
    └───validation
        ├───annotations
        └───images

将所有图片和对应xml的百分之七八十分别放在train内的Images和annotations内

将剩余图片和对应xml放在validation内的annotations和images内

数据集至此准备完毕

 

b.训练

运行一下代码开始训练

from imageai.Detection.Custom import DetectionModelTrainer

trainer = DetectionModelTrainer()
# 训练的是YOLOV3模型
trainer.setModelTypeAsYOLOv3()
# 数据集地址
trainer.setDataDirectory(data_directory="dataset")

# 图片类别,batch_size,训练次数,train_from_pretrained_model="pretrained-yolov3.h5"可以决定是否采用转移训练
trainer.setTrainConfig(
    object_names_array=["1", "2", "3","4", "5", "6","7", "8"],
    batch_size=2,
    num_experiments=10,
    )
# In the above,when training for detecting multiple objects,
#set object_names_array=["object1", "object2", "object3",..."objectz"]
trainer.trainModel()

后续训练需要modle内的h5文件和json内的detection_config.json文件

 

3.通过模型进行目标检测

需要用到的文件:上面训练得到的h5和json文件,识别的图片

运行下列代码

from imageai.Detection.Custom import CustomObjectDetection

detector = CustomObjectDetection()
detector.setModelTypeAsYOLOv3()
# h5文件地址
detector.setModelPath("detection_model-ex-013--loss-0027.176.h5")
# json文件地址
detector.setJsonPath("detection_config.json")
detector.loadModel()
# 输入输出图片地址
detections = detector.detectObjectsFromImage(input_image="metro1.png", output_image_path="metro1_new.png")
for detection in detections:
    print(detection["name"], " : ", detection["percentage_probability"], " : ", detection["box_points"])

完成检测

 

4.注意:

卡在cpoch 1/xxx不动,可能是电脑性能问题

数据集修改后,一定要删除除了train和annotations外的其他文件,再进行训练

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值