概率的公理化定义:非负性、正则性、可列可加性
P(整个样本空间)=1
整个样本空间=整个样本空间+空集+空集+…
由可列可加性可得
推出P(整个样本空间)= P(整个样本空间)+ P(空集)+ P(空集)+…
推出P(空集)=0
有限可加性:有限个互不相容的事件A1,A2,…,An,P(Sum(Ai))=Sum(P(Ai)),i从1到n
证明:
由可列可加性可知
对于互不相容的事件A1,A2,…,An,A(n+1)(空),A(n+2)(空),…
有P(Sum(Ai))=Sum(P(Ai)),i从1递增
又因为P(A(i))=0,i>n
于是有P(Sum(Ai))=Sum(P(Ai)),i从1到n
证毕
概率的单调性:若A事件包含B事件,则P(A)>=P(B)
证明:
A包含B=>(A-B)与B的交为空且并为A,P(A-B)>=0
则有P((A-B)+B)=P(A-B)+P(B)=P(A)
P(A-B)=P(A)-P(B)>=0
P(A)>=P(B)
对立:A事件的概率+A对立事件的概率=1(常用于简化求解)
概率的加法公式:1.3.3
概率的连续性(在连续空间讨论):
概率的连续性依托于概率的上连续且下连续
概率的上下连续依托于单调的事件序列收敛于极限事件
事件域上的极限事件定义(可列与极限的转换):
对于一个单调不减的事件序列F1 包含于 F2 包含于 F3 包含于…包含于 Fn包含于…
称 可列并(U Fi)为序列{Fi}的极限事件,记作 lim Fi= 可列并(U Fi)
对于一个单调不增的事件序列E1 包含 E2 包含 E3 包含…包含 En包含于…
称 可列交(交 Ei)为序列{Ei}的极限事件,记作 lim Ei= 可列交(交 Ei)
(补充:单调不减且恒小于等于1,必有极限;单调不增且恒大于等于0,必有极限)
事件域上概率的上下连续性定义:
对于一个单调不减的事件序列{Fi},P(lim Fi)=lim P(Fi),称为下连续
对于一个单调不增的事件序列{Ei},P(lim Ei)=lim P(Ei),称为上连续
概率的连续性:若P是事件域上的概率,则P既下连续又上连续
证明:
下连续:P(lim Fn)=lim P(Fn)
条件有非负性,正则性,可列可加性
对于事件域上一个单调不减的事件序列{Fi}
有极限事件lim Fn=U Fn
则有P(lim Fn)=P(U Fn)
有U Fn=U (Fi-F(i-1)),且Fi-F(i-1)不互相容
由可列可加性得
P(lim Fi)=P(U Fn)=lim Sum(P(Fi-F(i-1)))
由有限可加性
Sum(P(Fi-F(i-1)))=Fn
推出P(lim Fi)=P(U Fn)=lim P(Fn)
(补充:可列个(Fi-F(i-1))相加=lim Fn)
上连续同理
P是事件域上的概率函数,其可列可加(连续空间)的充要条件:有限可加,下连续
必要性参考上一个证明
下证充分性:P(Sum Fn)=Sum P(Fn)
设事件域上一个单调不减的事件序列{Fi}
由下连续得P(lim Fn)=lim P(Fn)
由有限可加性得P(Fn)= Sum(P(Fi-F(i-1)))
推出P(lim Fn)=lim Sum(P(Fi-F(i-1)))
P(lim Fn)=P(U Fi-F(i-1))
lim Sum(P(Fi-F(i-1)))=U P(Fi-F(i-1))
推出P(U Fi-F(i-1))= U P(Fi-F(i-1))
(补充重点:可列与极限之间的互相转换)