数方格 2013余姚

题目描述了在给定矩形区域内规划正方形广场的问题,要求广场边线不能跨过单位正方形,且必须为正方形。市民提出了多个方案,领导需要知道最多有多少种可行方案。程序设计的目标是计算不同正方形广场的方案数。
摘要由CSDN通过智能技术生成

题目描述

余姚市要新建一个广场,为了美观,要求完全是正方形。目前正在规划当中,正方形的大小和位置都在热烈的讨论之中。假设将可用于造广场的区域看成一个矩形,由1*1的单位正方形构成。如下图:这是一个4*6的矩形区域。

 


广场要求必须在这个矩形范围内,广场边线不能跨过任意一个单位正方形内部,只能与正方形边线重合,且广场必须为正方形。那么上图中,以下4种正方形均为可行方案:

市民们提出了很多建造广场的方案。现在领导想要知道,到底有多少种不同的方案可以选择?请你设计一个程序,来计算以下建造广场的最多可行方案数。

【样例输入1】 1 5

【样例输入2】 4 6

【样例输入3】 6 4

 

【样例输出1】 5

【样例输出2】 50

【样例输出3】 50

答案:

 

 

#include<bits/stdc++.h>

using namespace std;

int main() {

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值