机器学习——评价指标

评价指标

  • 真阳性(True Positive, TP):标签为正类,预测为正类
  • 假阳性(False Positive, FP):标签为负类,预测为正类(错检)
  • 假阴性(False Negative, FN):标签为正类,预测为负类(漏检)
  • 真阴性(True Negative, TN):标签为负类,预测为负类

准确率(Accuracy)

定义:
A c c u r a c y = T P + T N T P + F N + F P + T N Accuracy=\frac{TP+TN}{TP+FN+FP+TN} Accuracy=TP+FN+FP+TNTP+TN
即所有分类正确的样本占全部样本的比例

精确率/查准率(Precision)

定义:
P r e c i s i o n = T P T P + F P Precision=\frac{TP}{TP+FP} Precision=TP+FPTP
即预测是正例的结果中,确实是正例的比例,Precision同样是衡量误检
在较高的查准率的情况下,误检可能较低,但是漏检较高

查全率(Recall)

定义:
R e c a l l = T P T P + F N Recall=\frac{TP}{TP+FN} Recall=TP+FNTP
即所有正例的样本中,被找出的比例。Recall同样是衡量漏检
在要求不出错的情况下,需要大的查全率,即可能设定的阈值很低,但是误检可能较高

F1-score

综合评定Precision和Recall
定义:
F 1 s c o r e = 2. P r e c i s i o n . R e c a l l P r e c i s i o n + R e c a l l F1_{score}=\frac{2.Precision.Recall}{Precision+Recall} F1score=Precision+Recall2.Precision.Recall

ROC和AUC

AUC是一种模型分类指标,且仅仅是二分类模型的评价指标。AUC是Area Under Curve的简称,那么Curve就是ROC(Receiver Operating Characteristic),翻译为“接收者操作特性曲线”。ROC是一条曲线,AUC是一个面积值
ROC曲线为FPR与TPR之间的关系曲线,这个组合以FPR对TPR,即是以代价对收益,显然收益越高,代价越低,模型的性能就越好。

  • x轴为假阳性率(FPR):在所有的负样本中,分类器预测错误的比例
    F P R = F P F P + T N FPR=\frac{FP}{FP+TN} FPR=FP+TNFP
  • y轴为真阳性率(TPR):在所有的正样本中,分类器预测正确的比例(等于Recall)
    T P R = T P T P + F N TPR=\frac{TP}{TP+FN} TPR=TP+FNTP
    在这里插入图片描述
    **AUC定义:**AUC值为ROC曲线所覆盖的区域面积,显然,AUC越大,分类器分类效果越好。
  • AUC=1,是完美分类器
  • 0.5<AUC<1,优于随机猜测。有预测价值
  • AUC=0.5,跟随机猜测一样,没有预测价值
  • AUC<0.5,比随机猜测还差,但只要总是反预测就行

PR曲线

PR曲线的横坐标是精确率P,纵坐标是召回率R。评价标准和ROC一样,先看平滑不平滑。一般来说,在同一测试集,上面的比下面的好。当P和R的值接近时,F1值最大,此时画连接(0,0)和(1,1)的线,线和PRC重合的地方的F1是这条线最大的F1(光滑的情况下),此时的F1对于PRC就好像AUC对于ROC一样。

IOU和mIOU

就是IOU(Intersection over Union),交集占并集的大小
I O U = J a c c a r d = ∣ A ∩ B ∣ ∣ A ∪ B ∣ = ∣ A ∩ B ∣ ∣ A ∣ + ∣ B ∣ − ∣ A ∩ B ∣ IOU=Jaccard=\frac{|A\cap{B}|}{|A\cup{B}|}=\frac{|A\cap{B}|}{|A|+|B|-|A\cap{B}|} IOU=Jaccard=ABAB=A+BABAB
mIOU一般都是基于类进行计算的,将每一类的IOU计算之后累加,再进行平均,得到的就是mIOU

AP和mAP

AP(average Precision)和mAP(mean average Precision)常用于目标检测任务中。AP就是每一类的Precision的平均值。而mAP是所有类的AP的平均值。

AUC的含义以及是否对正负样本比例敏感?

AUC定义:AUC值为ROC曲线所覆盖的区域面积,显然,AUC越大,分类器分类效果越好。
AUC还有另一个意义:分别随机从正负样本集中抽取一个正样本,一个负样本,正样本的预测值大于负样本的概率。
AUC对正负样本比例不敏感

AUC的两种计算方法

  • 计算ROC曲线覆盖的区域面积
  • 根据定义:分别随机从正负样本集中抽取一个正样本、一个负样本,正样本的预测值大于负样本的概率。根据古典概率模型
    A U C = ∑ ( p r e d p o s > p r e d n e g ) p o s i t i v e n u m ∗ n e g a t i v e n u m AUC=\frac{\sum(pred_{pos}>pred_{neg})}{positive_{num}*negative_{num}} AUC=positivenumnegativenum(predpos>predneg)
    分母是正负样本总的组合数,分子是正样本大于负样本的组合数

讲讲分类、回归、推荐、搜索的评价指标

  • 分类指标:
    **Accuracy:**即所有分类正确的样本占全部样本的比例
    **Precision:**查准率
    **Recall:**查全率
    F1-score衡量Precision和Recall之间的联系
    AUC值为ROC曲线所覆盖的区域面积
  • 回归指标:
    均方误差(MSE)
    均方根误差(RMSE)
    MAE(平均绝对误差)
    R squared
  • 推荐任务评价指标:
    离线评估
  • 评分预测
    对于评分预测模型:训练数据集训练好数据,测试数据集预测用户对物品的评分。
  • 对于top N模型:对排名进行评估。评价指标:准确率,召回率,F1
    在线评估
  • A/B test
    将用户划分为A,B两组,A实验组用户,接受所设计的推荐算法推荐的商品,B对照组用户,接受基线方法推荐的商品。通过对比两组用户的行为来评估推荐算法的性能。
    CTR:用户点击率,通过该算法计算出的被点击的项目占推荐项目总数的百分比
    CR:用户转化率,用户购买的项目占被点击的项目的比率
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值