Spark中的Shuffle过程

一、Spark中的Shuffle过程

Shuffle分为两种:Shuffle write、Shuffle read

Spark中Shuffle分为两种:HahShuffle、SortShuffle;

1、HashShuffle

磁盘小文件的个数为:M*R = 4*3 =12个

每一个buffer的大小为32k,由于产生的磁盘小文件过多,会产生一系列的问题

如:因为在写文件的时候会产生大量的写句柄,导致产生大量的临时对象,产生OM问题

       在Reduce端读取小文件的时候,又会产生的大量的读句柄,浪费资源

       在Reduce端读取小文件时,因为小文件数目过多,产生大量的通信操作,通信操作会根频繁,浪费资源。

针对上述问题,对HashShuffle进行了优化操作

此时一个task group共同使用一组block file,这样可以减少大量的磁盘小文件

优化方式中产生磁盘小文件的个数与Executor中Core的个数有关 文件个数 = core*Reduce个数 = 2*3;

2、SortShuffle

SortShuffle分为两种:普通运行机制、ByPass运行机制

(1)普通运行机制

简单说明:

1、一个task产生的数据存储到Map或者Array中(根据使用的算子进行区分),其中内存数据的溢写机制如下:

默认为5M,当数据为5.1m时,此时内存数据会再次申请内存,大小为5.1*2-5 = 5.2m,如果还可以给其分配5.2m的内存,就不溢写,直到最后不能再给其分配资源时,进行溢写。

2、溢写的时会进行排序操作,然后分批写入磁盘文件(默认是batch=1w)

3、在写完成后,会进行文件的合并,并产生一个索引文件,利用快速查找

产生磁盘小文件的个数为:2*m;与Reduce个数无关。

(2)ByPass运行机制

减少了排序的环节

产生磁盘小文件的个数为:2*m;与Reduce个数无关。

bypass运行机制的触发:shuffle.reduce.task数量小于spark.shuffle.sort.bypassMergeThreshold参数的值。

二、Spark 调优

三、Reduce端拉取数据

 

 

转载于:https://www.cnblogs.com/learn-bigdata/p/10802429.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值