spark中资源调度任务调度

在spark的资源调度中

1、集群启动worker向master汇报资源情况

2、Client向集群提交app,向master注册一个driver(需要多少core、memery),启动一个driver

3、Driver将当前app注册给master,(当前app需要多少资源),并请求启动对应的Executor

4、driver分发任务给Executor的Thread Pool。

根据Spark源码可以知道:

1、一个worker默认为一个Application启动一个Executor

2、启动的Executor默认占用这个worker的全部资源

3、如果要在一个worker上启动多个Executor,(前提:在内存充足的情况下)需要设置--executor-cores num 参数

宽依赖、窄依赖

窄依赖:父RDD与子RDD,partition之间是一对一的关系,或者多对一的关系。

宽依赖:父RDD与子RDD,partition之间是一对多,多对多的关系。

 

注意:

1、Stage的划分是根据宽窄依赖进行的,Satge与Satge之间是根据宽依赖划分的,每个Satge内部是窄依赖的。

2、窄依赖内部父RDD与子RDD之间的Partition是一对一的关系。

3、一个Satge内部是由多个RDD组成,在运行的过程中,会形成一个个并行的task,每个task形成一个pipeline。

4、在pipeline的运行过程中,数据不会落地,只有在右侧的join阶段的shuffle write才会数据落地。

Spark任务调度

Spark的任务调度过程

RDD之间有依赖关系,所以可以根据依赖关系倒推回去,寻找到RDD的所有依赖关系,形成DAG(有向无环图)

由RDD Object将DAG传递给DAGScheduler

DAGScheduler会根据宽依赖将有向无环图划分为一个个的Satge

DAGScheduler将taskSet传递给TaskScheduler(实际上taskScheduler和Stage是相同的,只是叫法不同)

TaskScheduler会将TaskSet划分为一个个的task,传递给worker

worker会将task放入反序列化放入自己的线程池中,进行执行。

注意:

默认情况下TaskScheduler会对计算失败的task重试3次

默认情况下DAGScheduler会对计算失败的Stage重试4次

一共重试3*4=12次

未避免在对数据库操作时,操作一半失败,重试导致数据重复插入问题,可以采取两个办法

(1)设置主键

(2)关闭推测执行(默认是关闭的)

特殊情况:

如果task在执行的过程中报错shuffle file not find错误信息,此时TaskScheduler是不负责重试的,直接抛出对应的Satge运行失败,由DAGScheduler负责重试,如果DAGScheduler4次重试失败,则直接显示Job运行失败。

转载于:https://www.cnblogs.com/learn-bigdata/p/10793669.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值