Description
Alice和Bob现在要乘飞机旅行,他们选择了一家相对便宜的航空公司。该航空公司一共在n个城市设有业务,设这些城市分别标记为0到n-1,一共有m种航线,每种航线连接两个城市,并且航线有一定的价格。Alice和Bob现在要从一个城市沿着航线到达另一个城市,途中可以进行转机。航空公司对他们这次旅行也推出优惠,他们可以免费在最多k种航线上搭乘飞机。那么Alice和Bob这次出行最少花费多少?
Input
数据的第一行有三个整数,n,m,k,分别表示城市数,航线数和免费乘坐次数。
第二行有两个整数,s,t,分别表示他们出行的起点城市编号和终点城市编号。(0<=s,t<n)
接下来有m行,每行三个整数,a,b,c,表示存在一种航线,能从城市a到达城市b,或从城市b到达城市a,价格为c。(0<=a,b<n,a与b不相等,0<=c<=1000)
Output
只有一行,包含一个整数,为最少花费。
Sample Input
5 6 1
0 4
0 1 5
1 2 5
2 3 5
3 4 5
2 3 3
0 2 100
0 4
0 1 5
1 2 5
2 3 5
3 4 5
2 3 3
0 2 100
Sample Output
8
HINT
对于30%的数据,2<=n<=50,1<=m<=300,k=0;
对于50%的数据,2<=n<=600,1<=m<=6000,0<=k<=1;
对于100%的数据,2<=n<=10000,1<=m<=50000,0<=k<=10.
题解
典型的分层图最短路。原图既然是一层的。我们把它拆成k+1层。每一层与下一层连一条0的边,第i层表示使用i次免费通过路径,每一条边既能连本层,也能连到下一层。然后直接裸上Dijikstra即可。拆完点后点的个数100000,复杂度不虚。
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<queue>
#define inf 1000000000
using namespace std;
const int maxn=1100010;
int pre[maxn*2],other[maxn*2],last[maxn],num,w[maxn*2],d[maxn];
int n,m,k,s,t;
struct node{
int i,dis;
};
priority_queue <node>q;
bool operator< (node a,node b){
return a.dis>b.dis;
}
void add(int x,int y,int z){
num++;
pre[num]=last[x];
last[x]=num;
other[num]=y;
w[num]=z;
}
int dijkstra(){
memset(d,127,sizeof(d));
d[s]=0;
q.push((node){s,0});
while(!q.empty()){
node u=q.top();
q.pop();
if(d[u.i]!=u.dis) continue;
for(int i=last[u.i];i;i=pre[i]){
int v=other[i];
if(d[v]>u.dis+w[i]){
d[v]=u.dis+w[i];
q.push((node){v,d[v]});
}
}
}
int ans=inf;
for(int i=0;i<=k;i++)
ans=min(ans,d[t+i*n]);
return ans;
}
int main(){
int x,y,z;
scanf("%d%d%d",&n,&m,&k);
scanf("%d%d",&s,&t);
s++,t++;
for(int i=1;i<=m;i++){
scanf("%d%d%d",&x,&y,&z);
x++,y++;
for(int j=0;j<=k;j++){
add(x+j*n,y+j*n,z);
add(y+j*n,x+j*n,z);
if(j<k){
add(x+j*n,y+(j+1)*n,0);
add(y+j*n,x+(j+1)*n,0);
}
}
}
printf("%d\n",dijkstra());
return 0;
}