- 准确率
准确率是一个用于评价分类模型的指标。通俗来说,准确率是指我们的模型预测正确的结果所占的比例。
Accuracy=Number of correct predictions /Total number of predictions
对于二元分类,也可以根据正类别和负类别按如下方式计算准确率:
Accuracy=(TP+TN)/(TP+FP+TN+FN)
其中,TP=真正例,TN=真负例,FP=假正例,FN=假负例。
当我们使用分类不平衡的数据集(比如正类别标签和负类别标签的数量之间存在明显差异)时,单单准确率一项并不能反映全面情况。
这时我们需要引入两个能够更好地评估分类不平衡问题的指标:精确率和召回率。
- 精准率
精准率表示被识别为正类别的样本中,确实为正类别的样本的比例。
精准率用公式表示为:
Precision=TP/(TP+FP)
ps:如果模型的预测结果中没有假正例,则模型的精确率为 1.0。
- 召回率
召回率表示在所有的正样本中,被识别为正样本的比例。
召回率用公式表示为:
Recall=TP/(TP+FN)
ps: 如果预测结果中没有假负例,则模型的召回率为1.0。
精确率和召回率:一场拔河比赛
要全面评估模型的有效性,必须同时检查精确率和召回率。遗憾的是,精确率和召回率往往是此消彼长的情况。也就是说,提高精确率通常会降低召回率值,反之亦然。
ps:本博文仅仅是记录一些概念点,没有创新点。
谷歌的机器学习课程