分类模型常用评价指标1

本文介绍了分类模型的常用评价指标,包括混淆矩阵、ROC曲线和AUC。在正负样本不平衡的问题中,AUC成为重要的评价标准。混淆矩阵提供了TP、FP、FN和TN等概念,用于计算准确率、精确率、召回率和特异度。ROC曲线展示了不同阈值下模型的灵敏性和精确性变化,AUC则衡量ROC曲线下的面积,值越大模型效果越好。在样本不平衡的情况下,AUC更具优势。
摘要由CSDN通过智能技术生成

在分类模型中,常用的评价指标包括混淆矩阵、ROC曲线、AUC、KS指标、提升度等。其中针对正负样本极度不平衡的分类问题,例如广告分类预测问题,最常用的模型评价指标就是AUC

混淆矩阵是分类问题中常用的模型评价方法之一。以广告二分类问题为例,假设模型预测为正例则记为1(Positive),如点击用户;预测为反例则记为0(Negative),如非点击用户,那么我们可以将实际的数据情况与模型预测结果相结合,得到以下2×2矩阵,也就是我们常说的混淆矩阵,如图4-2所示。

其中,各参数说明如下:

·TP表示预测值为正例,真实值也为正例;·FP表示预测值为正例,真实值为反例;·FN表示预测值为反例,真实值为正例;·TN表示预测值为反例,真实值也为反例。

对于预测性的分类模型,当然是希望预测结果越准确越好。那么对应到混淆矩阵中,就是希望TP与TN对应位置的数值越大越好,而FP与FN对应位置的数值越小

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值