BCE和CE交叉熵损失函数的区别

BCE和CE的区别

首先需要说明的是PyTorch里面的BCELoss和CrossEntropyLoss都是交叉熵,数学本质上是没有区别的,区别在于应用中的细节。

BCE用于二分类,CE用于多分类

BCE适用于0/1二分类,计算公式就是 “ -ylog(y^hat) - (1-y)log(1-y^hat) ”,其中y为GT,y_hat为预测值。这样,当gt为0的时候,公式前半部分为0,y^hat 需要尽可能为0才能使后半部分数值更小;当gt为1时,后半部分为0,y^hat 需要尽可能为1才能使前半部分的值更小,这样就达到了让y^hat尽量靠近gt的预期效果。当然,显然这要求输入必须在0-1之间,所以为了让网络的输出确保在0-1之间,我们一般都会加一个Sigmoid,而更具体一点来说,使用BCELoss的话只需要网络输出一个节点即可,不像CE Loss那样,往往是有n_class个类就需要网络最终输出n_class个节点。

而CE因为需要用在多分类上,所以计算公式就变成了sum(-ylog(y^hat))。可能有些同学很敏锐的发现了,这个函数实际上只是在对相应gt=1的那个节点的值做约束,希望这一点的输出能尽量为1;而其他原本gt为0的节点因为y=0,在计算到sum中的时候无论其相应输出节点是多少都没有关系,那这是不是意味着CE的公式还有漏洞呢?话虽这么说,但其实是因为我们忘记了CE之前还有Softmax这个函数,这个函数会让输入的n_class个节点中大的更大,小的更小,并且可以确保最终所有节点的输出的总和为1,这样一来只要对应gt=1的那个节点输出足够靠近1,其他的节点自然输出就会趋近于0了。

总结

上面的两个例子都是在分类任务中说的,而在分割任务中,BCE和CE的另一个区别就可以说是,BCE只需要输出一个通道,而CE需要输出n_class个通道。

### 回答1: BCE损失函数(二元交叉熵损失函数)是一种常用的分类损失函数,用于计算模型输出与真实标签之间的损失,它能够有效地衡量模型预测结果与实际结果之间的差异。CE损失函数(交叉熵损失函数)是多分类损失函数,用于计算模型输出与真实标签之间的损失,它能够有效评估多分类模型的预测准确率。两者的区别在于BCE损失函数只适用于二分类模型,而CE损失函数适用于多分类模型。 ### 回答2: BCE (Binary Cross-Entropy)和CE (Cross-Entropy)是常用的损失函数,用于训练机器学习模型进行二分类或多分类任务。 BCE损失函数广泛应用于二分类任务。它根据预测结果与真实标签之间的差异来计算损失。BCE损失函数适用于样本只属于两个类别的情况,如声音的真假、邮件的垃圾与非垃圾等。BCE损失函数的计算不考虑其他类别的情况,只关注两个类别的差异。 CE损失函数适用于多分类任务。它通过计算预测结果与真实标签之间的差异来计算损失。CE损失函数在计算损失时会考虑所有类别的差异,而不仅限于两个类别。它适用于样本属于多个类别的情况,如图像识别中不同动物的分类、情感分析中多种情绪的分类等。 两者的区别主要体现在处理的分类问题上。BCE损失函数只处理二分类问题,而CE损失函数可以处理多分类问题。在计算损失时,BCE损失函数只关注两个类别之间的差异,而CE损失函数关注所有类别之间的差异。因此,在选择损失函数时,需要根据具体的分类任务来决定使用BCE损失函数还是CE损失函数。 ### 回答3: BCECE是两种常用的损失函数,主要用于二分类任务。 BCE是二元交叉熵损失函数(Binary Cross Entropy Loss),而CE是多元交叉熵损失函数(Categorical Cross Entropy Loss)。 BCE适用于二分类任务,比如判断一张图像中是否存在某个特定的对象。它的计算方式是将真实标签(通常为0或1)与预测概率进行比较,然后计算交叉熵。BCE的计算结果只和一个概率值相关,因此,在计算中只需要一个神经元输出,并使用Sigmoid作为激活函数。 CE适用于多分类任务,比如图像分类问题中的多个类别预测。它的计算方式是将真实标签(通常使用one-hot编码)与预测概率进行比较,然后计算交叉熵。CE的计算结果和多个概率值相关,因此,在计算中需要多个神经元输出,并使用Softmax作为激活函数。 这两种损失函数的区别在于计算方式和使用场景。BCE适用于仅有两个类别的二分类任务,而CE适用于多个类别的分类任务。在实际使用中,我们根据具体的问题和数据集选择合适的损失函数来最小化模型的预测误差,提高模型的性能。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值