乐乐数模 曾获美赛o奖,为大家带来关于2025美赛B题的全方面解答
2025 美赛 B: Managing Sustainable Tourism(管理可持续旅游)
这个题目要求构建一个可持续旅游管理模型,以解决阿拉斯加朱诺市因过度旅游导致的环境压力、基础设施负担和居民满意度下降等问题。通过优化游客数量、收入分配和投资策略,模型旨在平衡经济效益、环境保护和社会需求,并能够适配其他受过度旅游影响的地区,最终为当地旅游委员会提供科学的管理建议。
篇幅限制,仅展示部分思路。
问题一:构建可持续旅游模型
数学模型
变量定义
目标函数(多期动态优化)
最大化总贴现效益:
Maximize
J
=
∑
t
=
0
T
R
t
−
E
t
−
I
t
+
α
S
t
(
1
+
ρ
)
t
\text{Maximize } J = \sum_{t=0}^{T} \frac{R_t - E_t - I_t + \alpha S_t}{(1 + \rho)^t}
Maximize J=t=0∑T(1+ρ)tRt−Et−It+αSt
其中:
动态约束
- 环境承载力更新:
C env , t + 1 = C env , t + k M ⋅ M t − γ ⋅ V t 2 C_{\text{env}, t+1} = C_{\text{env}, t} + k_M \cdot M_t - \gamma \cdot V_t^2 Cenv,t+1=Cenv,t+kM⋅Mt−γ⋅Vt2- k M k_M kM 为环保投资效果系数(默认0.005)
- 基础设施容量更新:
C infra , t + 1 = C infra , t + k N ⋅ N t C_{\text{infra}, t+1} = C_{\text{infra}, t} + k_N \cdot N_t Cinfra,t+1=Cinfra,t+kN⋅Nt- k N k_N kN 为基建投资效果系数(默认0.01)
- 居民满意度模型:
S t + 1 = S t ⋅ e − θ ⋅ V t + ϵ ⋅ ln ( 1 + P t ) S_{t+1} = S_t \cdot e^{-\theta \cdot V_t} + \epsilon \cdot \ln(1 + P_t) St+1=St⋅e−θ⋅Vt+ϵ⋅ln(1+Pt)- θ \theta θ 为游客对满意度的负面影响系数(默认0.002)
- ϵ \epsilon ϵ 为社区投资效果系数(默认0.1)
- 投资预算约束:
M t + N t + P t ≤ η ⋅ R t M_t + N_t + P_t \leq \eta \cdot R_t Mt+Nt+Pt≤η⋅Rt- η \eta η 为投资比例上限(默认0.3)
静态约束
V
t
≥
V
min
(
最低游客量,默认10000人/年
)
V_t \geq V_{\text{min}} \quad (\text{最低游客量,默认10000人/年})
Vt≥Vmin(最低游客量,默认10000人/年)
S
t
≥
S
min
(
最低满意度,默认0.4
)
S_t \geq S_{\text{min}} \quad (\text{最低满意度,默认0.4})
St≥Smin(最低满意度,默认0.4)
C
env
,
t
≥
E
t
(
环境承载力需覆盖环境成本
)
C_{\text{env}, t} \geq E_t \quad (\text{环境承载力需覆盖环境成本})
Cenv,t≥Et(环境承载力需覆盖环境成本)
Python代码实现
import numpy as np
from scipy.optimize import minimize
# 参数配置
T = 5
rho = 0.05
r = 500
gamma = 0.001
beta = 200
alpha = 0.3
k_M = 0.005
k_N = 0.01
theta = 0.002
epsilon = 0.1
eta = 0.3
S_min = 0.4
C_env_initial = 1e7
C_infra_initial = 20000
def objective(x):
V = x[:T]
M = x[T:2*T]
N = x[2*T:3*T]
P = x[3*T:4*T]
total = 0.0
C_env = C_env_initial
C_infra = C_infra_initial
S = 0.7 # 初始满意度
for t in range(T):
R = r * V[t]
E = gamma * V[t] ** 2
I = beta * V[t]
term = (R - E - I + alpha * S) / (1 + rho)**t
total += term
# 更新动态变量
C_env += k_M * M[t] - gamma * V[t]**2
C_infra += k_N * N[t]
S = S * np.exp(-theta * V[t]) + epsilon * np.log(1 + P[t])
return -total # 最小化负效益
def constraints(x):
cons = []
C_env = C_env_initial
C_infra = C_infra_initial
S = 0.7
V = x[:T]
M = x[T:2*T]
N = x[2*T:3*T]
P = x[3*T:4*T]
for t in range(T):
cons.append(C_infra - V[t]) # V_t <= C_infra(t)
cons.append(C_env - gamma * V[t]**2) # E_t <= C_env(t)
cons.append(S - S_min) # S_t >= S_min
cons.append(eta * r * V[t] - (M[t] + N[t] + P[t])) # 投资预算
# 更新动态变量
C_env += k_M * M[t] - gamma * V[t]**2
C_infra += k_N * N[t]
S = S * np.exp(-theta * V[t]) + epsilon * np.log(1 + P[t])
return np.array(cons)
# 初始猜测:游客量1.5万/年,各项投资50万美元/年
x0 = np.concatenate([
np.full(T, 15000),
np.full(T, 5e5),
np.full(T, 5e5),
np.full(T, 5e5)
])
# 变量边界(非负)
bounds = [(0, None)] * (4 * T)
# 求解优化问题
result = minimize(objective, x0, method='SLSQP', bounds=bounds, constraints={'type': 'ineq', 'fun': constraints})
print("优化状态:", result.message)
print("总贴现效益:", -result.fun.round(2))
print("最优游客量(按年):", result.x[:T].round())
print("环保投资分配(按年):", result.x[T:2*T].round())
# 敏感性分析
def sensitivity_analysis(param_key, delta=0.01):
original_value = globals()[param_key]
globals()[param_key] = original_value * (1 + delta)
perturbed_result = minimize(objective, x0, method='SLSQP', bounds=bounds, constraints={'type': 'ineq', 'fun': constraints})
sensitivity = (-perturbed_result.fun - (-result.fun)) / (original_value * delta)
globals()[param_key] = original_value
return sensitivity.round(2)
print("\n敏感性分析结果:")
params = ["gamma", "k_M", "r"]
for p in params:
print(f"- {p}: {sensitivity_analysis(p)}")
问题二:模型适配其他地区
调整方法
1. 环境敏感系数调整
γ
′
=
γ
⋅
ξ
(
ξ
为环境敏感因子,默认1.5
)
\gamma' = \gamma \cdot \xi \quad (\xi \text{ 为环境敏感因子,默认1.5})
γ′=γ⋅ξ(ξ 为环境敏感因子,默认1.5)
2. 游客分流策略
V
target
,
t
=
(
1
−
λ
)
⋅
V
t
,
V
alt
,
t
=
λ
⋅
V
t
(
λ
为分流比例,默认0.2
)
V_{\text{target}, t} = (1 - \lambda) \cdot V_t, \quad V_{\text{alt}, t} = \lambda \cdot V_t \quad (\lambda \text{ 为分流比例,默认0.2})
Vtarget,t=(1−λ)⋅Vt,Valt,t=λ⋅Vt(λ 为分流比例,默认0.2)
3. 差异化投资效用
k
M
′
=
k
M
⋅
γ
′
γ
k_M' = k_M \cdot \frac{\gamma'}{\gamma}
kM′=kM⋅γγ′
Python代码实现
1. 环境敏感系数调整
def adjust_environmental_sensitivity(gamma, xi=1.5):
"""
调整环境敏感系数
:param gamma: 原环境成本系数
:param xi: 环境敏感因子
:return: 调整后的环境成本系数 gamma'
"""
return gamma * xi
2. 游客分流策略
def divert_visitors(V_total, lambda_=0.2):
"""
游客分流策略
:param V_total: 总游客量
:param lambda_: 分流比例
:return: 目标景点游客量 V_target, 替代景点游客量 V_alt
"""
V_target = (1 - lambda_) * V_total
V_alt = lambda_ * V_total
return V_target, V_alt
3. 差异化投资效用
def adjust_investment_efficiency(k_M, gamma, gamma_new):
"""
调整环保投资效果系数
:param k_M: 原环保投资效果系数
:param gamma: 原环境成本系数
:param gamma_new: 调整后的环境成本系数
:return: 调整后的环保投资效果系数 k_M'
"""
return k_M * (gamma_new / gamma)
4. 完整适配代码
def adapt_model(original_result, lambda_=0.2, xi=1.5):
"""
模型适配函数:分流游客并调整环境敏感度
:param original_result: 原始优化结果
:param lambda_: 分流比例(默认0.2)
:param xi: 环境敏感因子(默认1.5)
:return: 适配后的优化结果
"""
# 游客分流
V_total = original_result.x[:T]
V_target = (1 - lambda_) * V_total
V_alt = lambda_ * V_total
# 调整环境参数
global gamma
gamma_original = gamma
gamma_new = adjust_environmental_sensitivity(gamma, xi)
gamma = gamma_new
# 调整环保投资效果系数
global k_M
k_M_original = k_M
k_M_new = adjust_investment_efficiency(k_M, gamma_original, gamma_new)
k_M = k_M_new
# 重新优化
adapted_result = minimize(objective, original_result.x, method='SLSQP', bounds=bounds, constraints={'type': 'ineq', 'fun': constraints})
# 恢复原参数
gamma = gamma_original
k_M = k_M_original
return adapted_result
# 示例:分流20%游客,环境敏感度提高50%
adapted_result = adapt_model(result, lambda_=0.2, xi=1.5)
print("\n适配后总效益:", -adapted_result.fun.round(2))
调整后的模型公式
1. 目标函数
Maximize
J
′
=
∑
t
=
0
T
R
t
−
E
t
′
−
I
t
+
α
S
t
(
1
+
ρ
)
t
\text{Maximize } J' = \sum_{t=0}^{T} \frac{R_t - E_t' - I_t + \alpha S_t}{(1 + \rho)^t}
Maximize J′=t=0∑T(1+ρ)tRt−Et′−It+αSt
其中:
- E t ′ = γ ′ ⋅ V target , t 2 E_t' = \gamma' \cdot V_{\text{target}, t}^2 Et′=γ′⋅Vtarget,t2:调整后的环境成本
- R t = r ⋅ V target , t R_t = r \cdot V_{\text{target}, t} Rt=r⋅Vtarget,t:目标景点的收入
2. 动态约束
- 环境承载力更新:
C env , t + 1 = C env , t + k M ′ ⋅ M t − γ ′ ⋅ V target , t 2 C_{\text{env}, t+1} = C_{\text{env}, t} + k_M' \cdot M_t - \gamma' \cdot V_{\text{target}, t}^2 Cenv,t+1=Cenv,t+kM′⋅Mt−γ′⋅Vtarget,t2 - 基础设施容量更新:
C infra , t + 1 = C infra , t + k N ⋅ N t C_{\text{infra}, t+1} = C_{\text{infra}, t} + k_N \cdot N_t Cinfra,t+1=Cinfra,t+kN⋅Nt - 居民满意度模型:
S t + 1 = S t ⋅ e − θ ⋅ V target , t + ϵ ⋅ ln ( 1 + P t ) S_{t+1} = S_t \cdot e^{-\theta \cdot V_{\text{target}, t}} + \epsilon \cdot \ln(1 + P_t) St+1=St⋅e−θ⋅Vtarget,t+ϵ⋅ln(1+Pt) - 投资预算约束:
M t + N t + P t ≤ η ⋅ R t M_t + N_t + P_t \leq \eta \cdot R_t Mt+Nt+Pt≤η⋅Rt
备忘录模板
# Memorandum
**To**: Juneau Tourism Council
**From**: MCM Team
**Date**: 2025-02-20
## Key Predictions
- **Glacier Retreat**: If tourist numbers remain unchanged, Mendenhall Glacier will vanish within 8-12 years, reducing tourism revenue by 30%-40%.
- **Revenue Impact**: A daily visitor cap of 18,000 (current peak: 20,000) would reduce annual revenue by \$56M (-15%) but stabilize environmental costs.
## Recommended Actions
1. **Dynamic Pricing**
- Implement a \$50 glacier access fee (projected +12% revenue).
2. **Investment Allocation**
- 50% of fees to carbon-neutral infrastructure (reduce $$ E(V) $$ by 25%).
- 30% to affordable housing programs (improve $$ S $$ by 0.15).
3. **Visitor Diversion**
- Promote rainforest tours with \$20 discounts (target 20% diversion).
## Risks
- **Over-restriction**: Tourists may shift to competing destinations (e.g., Sitka).