2025美赛<B题> 最全思路+完整代码 高效解析题目

乐乐数模 曾获美赛o奖,为大家带来关于2025美赛B题的全方面解答

2025 美赛 B: Managing Sustainable Tourism(管理可持续旅游)

这个题目要求构建一个可持续旅游管理模型,以解决阿拉斯加朱诺市因过度旅游导致的环境压力、基础设施负担和居民满意度下降等问题。通过优化游客数量、收入分配和投资策略,模型旨在平衡经济效益、环境保护和社会需求,并能够适配其他受过度旅游影响的地区,最终为当地旅游委员会提供科学的管理建议。

篇幅限制,仅展示部分思路。

问题一:构建可持续旅游模型

数学模型

变量定义

在这里插入图片描述

目标函数(多期动态优化)

最大化总贴现效益:
Maximize  J = ∑ t = 0 T R t − E t − I t + α S t ( 1 + ρ ) t \text{Maximize } J = \sum_{t=0}^{T} \frac{R_t - E_t - I_t + \alpha S_t}{(1 + \rho)^t} Maximize J=t=0T(1+ρ)tRtEtIt+αSt
其中:
在这里插入图片描述

动态约束
  1. 环境承载力更新
    C env , t + 1 = C env , t + k M ⋅ M t − γ ⋅ V t 2 C_{\text{env}, t+1} = C_{\text{env}, t} + k_M \cdot M_t - \gamma \cdot V_t^2 Cenv,t+1=Cenv,t+kMMtγVt2
    • k M k_M kM 为环保投资效果系数(默认0.005)
  2. 基础设施容量更新
    C infra , t + 1 = C infra , t + k N ⋅ N t C_{\text{infra}, t+1} = C_{\text{infra}, t} + k_N \cdot N_t Cinfra,t+1=Cinfra,t+kNNt
    • k N k_N kN 为基建投资效果系数(默认0.01)
  3. 居民满意度模型
    S t + 1 = S t ⋅ e − θ ⋅ V t + ϵ ⋅ ln ⁡ ( 1 + P t ) S_{t+1} = S_t \cdot e^{-\theta \cdot V_t} + \epsilon \cdot \ln(1 + P_t) St+1=SteθVt+ϵln(1+Pt)
    • θ \theta θ 为游客对满意度的负面影响系数(默认0.002)
    • ϵ \epsilon ϵ 为社区投资效果系数(默认0.1)
  4. 投资预算约束
    M t + N t + P t ≤ η ⋅ R t M_t + N_t + P_t \leq \eta \cdot R_t Mt+Nt+PtηRt
    • η \eta η 为投资比例上限(默认0.3)
静态约束

V t ≥ V min ( 最低游客量,默认10000人/年 ) V_t \geq V_{\text{min}} \quad (\text{最低游客量,默认10000人/年}) VtVmin(最低游客量,默认10000/)
S t ≥ S min ( 最低满意度,默认0.4 ) S_t \geq S_{\text{min}} \quad (\text{最低满意度,默认0.4}) StSmin(最低满意度,默认0.4)
C env , t ≥ E t ( 环境承载力需覆盖环境成本 ) C_{\text{env}, t} \geq E_t \quad (\text{环境承载力需覆盖环境成本}) Cenv,tEt(环境承载力需覆盖环境成本)
在这里插入图片描述


Python代码实现

import numpy as np
from scipy.optimize import minimize

# 参数配置
T = 5
rho = 0.05
r = 500
gamma = 0.001
beta = 200
alpha = 0.3
k_M = 0.005
k_N = 0.01
theta = 0.002
epsilon = 0.1
eta = 0.3
S_min = 0.4
C_env_initial = 1e7
C_infra_initial = 20000

def objective(x):
    V = x[:T]
    M = x[T:2*T]
    N = x[2*T:3*T]
    P = x[3*T:4*T]
    total = 0.0
    C_env = C_env_initial
    C_infra = C_infra_initial
    S = 0.7  # 初始满意度
    for t in range(T):
        R = r * V[t]
        E = gamma * V[t] ** 2
        I = beta * V[t]
        term = (R - E - I + alpha * S) / (1 + rho)**t
        total += term
        # 更新动态变量
        C_env += k_M * M[t] - gamma * V[t]**2
        C_infra += k_N * N[t]
        S = S * np.exp(-theta * V[t]) + epsilon * np.log(1 + P[t])
    return -total  # 最小化负效益

def constraints(x):
    cons = []
    C_env = C_env_initial
    C_infra = C_infra_initial
    S = 0.7
    V = x[:T]
    M = x[T:2*T]
    N = x[2*T:3*T]
    P = x[3*T:4*T]
    for t in range(T):
        cons.append(C_infra - V[t])                  # V_t <= C_infra(t)
        cons.append(C_env - gamma * V[t]**2)         # E_t <= C_env(t)
        cons.append(S - S_min)                       # S_t >= S_min
        cons.append(eta * r * V[t] - (M[t] + N[t] + P[t]))  # 投资预算
        # 更新动态变量
        C_env += k_M * M[t] - gamma * V[t]**2
        C_infra += k_N * N[t]
        S = S * np.exp(-theta * V[t]) + epsilon * np.log(1 + P[t])
    return np.array(cons)

# 初始猜测:游客量1.5万/年,各项投资50万美元/年
x0 = np.concatenate([
    np.full(T, 15000),
    np.full(T, 5e5),
    np.full(T, 5e5),
    np.full(T, 5e5)
])

# 变量边界(非负)
bounds = [(0, None)] * (4 * T)

# 求解优化问题
result = minimize(objective, x0, method='SLSQP', bounds=bounds, constraints={'type': 'ineq', 'fun': constraints})

print("优化状态:", result.message)
print("总贴现效益:", -result.fun.round(2))
print("最优游客量(按年):", result.x[:T].round())
print("环保投资分配(按年):", result.x[T:2*T].round())

# 敏感性分析
def sensitivity_analysis(param_key, delta=0.01):
    original_value = globals()[param_key]
    globals()[param_key] = original_value * (1 + delta)
    perturbed_result = minimize(objective, x0, method='SLSQP', bounds=bounds, constraints={'type': 'ineq', 'fun': constraints})
    sensitivity = (-perturbed_result.fun - (-result.fun)) / (original_value * delta)
    globals()[param_key] = original_value
    return sensitivity.round(2)

print("\n敏感性分析结果:")
params = ["gamma", "k_M", "r"]
for p in params:
    print(f"- {p}: {sensitivity_analysis(p)}")

问题二:模型适配其他地区

调整方法

1. 环境敏感系数调整

γ ′ = γ ⋅ ξ ( ξ  为环境敏感因子,默认1.5 ) \gamma' = \gamma \cdot \xi \quad (\xi \text{ 为环境敏感因子,默认1.5}) γ=γξ(ξ 为环境敏感因子,默认1.5)
在这里插入图片描述

2. 游客分流策略

V target , t = ( 1 − λ ) ⋅ V t , V alt , t = λ ⋅ V t ( λ  为分流比例,默认0.2 ) V_{\text{target}, t} = (1 - \lambda) \cdot V_t, \quad V_{\text{alt}, t} = \lambda \cdot V_t \quad (\lambda \text{ 为分流比例,默认0.2}) Vtarget,t=(1λ)Vt,Valt,t=λVt(λ 为分流比例,默认0.2)
在这里插入图片描述

3. 差异化投资效用

k M ′ = k M ⋅ γ ′ γ k_M' = k_M \cdot \frac{\gamma'}{\gamma} kM=kMγγ
在这里插入图片描述

  • 在这里插入图片描述

Python代码实现

1. 环境敏感系数调整
def adjust_environmental_sensitivity(gamma, xi=1.5):
    """
    调整环境敏感系数
    :param gamma: 原环境成本系数
    :param xi: 环境敏感因子
    :return: 调整后的环境成本系数 gamma'
    """
    return gamma * xi
2. 游客分流策略
def divert_visitors(V_total, lambda_=0.2):
    """
    游客分流策略
    :param V_total: 总游客量
    :param lambda_: 分流比例
    :return: 目标景点游客量 V_target, 替代景点游客量 V_alt
    """
    V_target = (1 - lambda_) * V_total
    V_alt = lambda_ * V_total
    return V_target, V_alt
3. 差异化投资效用
def adjust_investment_efficiency(k_M, gamma, gamma_new):
    """
    调整环保投资效果系数
    :param k_M: 原环保投资效果系数
    :param gamma: 原环境成本系数
    :param gamma_new: 调整后的环境成本系数
    :return: 调整后的环保投资效果系数 k_M'
    """
    return k_M * (gamma_new / gamma)
4. 完整适配代码
def adapt_model(original_result, lambda_=0.2, xi=1.5):
    """
    模型适配函数:分流游客并调整环境敏感度
    :param original_result: 原始优化结果
    :param lambda_: 分流比例(默认0.2)
    :param xi: 环境敏感因子(默认1.5)
    :return: 适配后的优化结果
    """
    # 游客分流
    V_total = original_result.x[:T]
    V_target = (1 - lambda_) * V_total
    V_alt = lambda_ * V_total

    # 调整环境参数
    global gamma
    gamma_original = gamma
    gamma_new = adjust_environmental_sensitivity(gamma, xi)
    gamma = gamma_new

    # 调整环保投资效果系数
    global k_M
    k_M_original = k_M
    k_M_new = adjust_investment_efficiency(k_M, gamma_original, gamma_new)
    k_M = k_M_new

    # 重新优化
    adapted_result = minimize(objective, original_result.x, method='SLSQP', bounds=bounds, constraints={'type': 'ineq', 'fun': constraints})
    
    # 恢复原参数
    gamma = gamma_original
    k_M = k_M_original
    return adapted_result

# 示例:分流20%游客,环境敏感度提高50%
adapted_result = adapt_model(result, lambda_=0.2, xi=1.5)
print("\n适配后总效益:", -adapted_result.fun.round(2))

调整后的模型公式

1. 目标函数

Maximize  J ′ = ∑ t = 0 T R t − E t ′ − I t + α S t ( 1 + ρ ) t \text{Maximize } J' = \sum_{t=0}^{T} \frac{R_t - E_t' - I_t + \alpha S_t}{(1 + \rho)^t} Maximize J=t=0T(1+ρ)tRtEtIt+αSt
其中:

  • E t ′ = γ ′ ⋅ V target , t 2 E_t' = \gamma' \cdot V_{\text{target}, t}^2 Et=γVtarget,t2:调整后的环境成本
  • R t = r ⋅ V target , t R_t = r \cdot V_{\text{target}, t} Rt=rVtarget,t:目标景点的收入
2. 动态约束
  1. 环境承载力更新
    C env , t + 1 = C env , t + k M ′ ⋅ M t − γ ′ ⋅ V target , t 2 C_{\text{env}, t+1} = C_{\text{env}, t} + k_M' \cdot M_t - \gamma' \cdot V_{\text{target}, t}^2 Cenv,t+1=Cenv,t+kMMtγVtarget,t2
  2. 基础设施容量更新
    C infra , t + 1 = C infra , t + k N ⋅ N t C_{\text{infra}, t+1} = C_{\text{infra}, t} + k_N \cdot N_t Cinfra,t+1=Cinfra,t+kNNt
  3. 居民满意度模型
    S t + 1 = S t ⋅ e − θ ⋅ V target , t + ϵ ⋅ ln ⁡ ( 1 + P t ) S_{t+1} = S_t \cdot e^{-\theta \cdot V_{\text{target}, t}} + \epsilon \cdot \ln(1 + P_t) St+1=SteθVtarget,t+ϵln(1+Pt)
  4. 投资预算约束
    M t + N t + P t ≤ η ⋅ R t M_t + N_t + P_t \leq \eta \cdot R_t Mt+Nt+PtηRt

备忘录模板

# Memorandum

**To**: Juneau Tourism Council  
**From**: MCM Team  
**Date**: 2025-02-20

## Key Predictions
- **Glacier Retreat**: If tourist numbers remain unchanged, Mendenhall Glacier will vanish within 8-12 years, reducing tourism revenue by 30%-40%.
- **Revenue Impact**: A daily visitor cap of 18,000 (current peak: 20,000) would reduce annual revenue by \$56M (-15%) but stabilize environmental costs.

## Recommended Actions
1. **Dynamic Pricing**  
   - Implement a \$50 glacier access fee (projected +12% revenue).
2. **Investment Allocation**  
   - 50% of fees to carbon-neutral infrastructure (reduce $$ E(V) $$ by 25%).
   - 30% to affordable housing programs (improve $$ S $$ by 0.15).
3. **Visitor Diversion**  
   - Promote rainforest tours with \$20 discounts (target 20% diversion).

## Risks
- **Over-restriction**: Tourists may shift to competing destinations (e.g., Sitka).

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值