一、labelme
使用 LabelMe 的步骤
-
安装: 在命令行中执行以下命令:
pip install labelme 或者加镜像 pip install labelme -i https://pypi.tuna.tsinghua.edu.cn/simple
-
启动 LabelMe: 安装完成后,可以通过命令行输入以下命令来启动 LabelMe:
-
使用方法
- 点击 文件--->打开目录 加载要标记的图像
加载图片后效果:
- 设置自动保存和输出路径
-
标注: 点击 编辑-->创建矩形
在图像上标注你想要的物体并定义label
标注完成后点击下一张继续标记
完成标注后,结果默认保存为 JSON 文件,这些文件可以与其他工具(如 TensorFlow、PyTorch 等)一起使用以进行训练。
如果要使用YOLO训练,则需要使用json转yolo格式的脚本来生成满足yolo训练格式的label文件,如果不想麻烦,直接用后面两种工具,能直接输出yolo格式
转换代码如下:
import json
import os
def convert_json_to_yolo(json_file, labels_folder):
# 读取 JSON 文件
with open(json_file, 'r') as f:
data = json.load(f)
# 获取图像的宽度和高度
image_width = data['imageWidth']
image_height = data['imageHeight']
# 获取图像文件名,并去掉前缀
image_filename = os.path.basename(data['imagePath']) # 提取纯文件名
# 创建目标标签文件夹
os.makedirs(labels_folder, exist_ok=True)
# 创建对应的标签文件路径
label_file_path = os.path.join(labels_folder, os.path.splitext(image_filename)[0] + '.txt')
with open(label_file_path, 'w') as label_file:
# 标签到索引的映射
label_dict = {
'bottle': 0,
'tv': 1,
'keyboard': 2,
'knef': 3,
'tissue': 4,
'pencil': 5,
'paper': 6
}
for shape in data['shapes']:
# 获取标签和点
label = shape['label']
points = shape['points']
# 计算矩形框的左上角和右下角坐标
x1, y1 = points[0]
x2, y2 = points[1]
# 计算中心点 (cx, cy),宽度 (w) 和高度 (h)
cx = (x1 + x2) / 2 / image_width
cy = (y1 + y2) / 2 / image_height
w = (x2 - x1) / image_width
h = (y2 - y1) / image_height
# 获取对应的标签索引
label_index = label_dict.get(label)
if label_index is not None: # 检查标签是否在字典中
# 写入 YOLO 格式中的一行
label_file.write(f"{label_index} {cx} {cy} {w} {h}\n")
else:
print(f"Warning: Label '{label}' not found in label_dict.")
def process_all_json_files(json_folder, labels_folder):
# 遍历输入文件夹中的所有 JSON 文件
for filename in os.listdir(json_folder):
if filename.endswith('.json'):
json_file_path = os.path.join(json_folder, filename)
print(f"Processing file: {json_file_path}")
convert_json_to_yolo(json_file_path, labels_folder)
if __name__ == "__main__":
json_folder = "data/valid/labelme" # JSON 文件所在的文件夹
labels_output_folder = "MyData/labels/val" # 输出标签文件夹
process_all_json_files(json_folder, labels_output_folder)
二、labelimg
-
安装: 在命令行中执行以下命令:
pip install labelimg 或者加镜像 pip install labelimg -i https://pypi.tuna.tsinghua.edu.cn/simple
-
启动 Labelimg:直接命令行输入即可
3.使用方法
opendir 打开图片文件夹---> Creat RectBox 创建矩形框 标记 --->左边save下面的输出格式点一下会变一下,可以选自己想要的格式如yolo --->点击save即可保存标记结果
三、Makesense
这是一个在线标记网站,界面很好看,网站地址https://www.makesense.ai/
使用方法:
点击右下角getstart 进入标记界面
点击Drop images导入你的图片数据
点击左边Object Detection
这里你可以点击加号创建你的label列表,也就是你要标记的物体都有哪些名称,建议可以提前写下来方便等会标记用,也可以直接点右下角start project开始标记
标记后右上角会出现一个Select label 表示你的标记框,你可以点击它设置他的名字,如果你上一步没有提前设置label名称集,那么这里他会让你创建
标记完成后点击左上角actions-->export annotations
选择保存的格式,如第一个是yolo格式,点击export即可导出
AI辅助标记
此外,如果你想加速标记,可以采用导入本地训练模型帮助你标记,原理就是用图像检测的结果来辅助你标记,使用后,你会发现你上传的图片会有很多个框框,你只需要选择保留或者删除即可,使用方法如下:
点击actions -->run ai locally
选择yolov5模型,点击use model
此时他会弹出让你选择本地的文件,这个时候我们做以下操作:
需要有yolov5的项目代码(下载链接https://github.com/ultralytics/yolov5)
1. 命令行安装tensorflowjs
pip install tensorflowjs==2.8.5 -i https://pypi.tuna.tsinghua.edu.cn/simple
2. 执行export.py文件
首先打开yolov5项目,里面会有一个export.py的文件,使用以下指令执行它
python export.py --weights yolov5s.pt --include tfjs #weights可以使用自己训练的参数集
3. 执行结束后会在`yolov5s_web_model`文件夹下生成我们需要的文件,然后再在该文件夹创建一个`classes.txt`文件,内容为所有的类别名称,一行一个定格写
4. 此时我们就可以在网站中点击use model,把yolov5s_web_model文件夹下所有文件上传进去,就可以使用了
使用过程中会弹出一下界面,提示你加入一些标签,你可以接受或者拒绝