常用的图像标注工具【安装+使用方法】

一、labelme

使用 LabelMe 的步骤

  1. 安装: 在命令行中执行以下命令:

    pip install labelme
    或者加镜像
    pip install labelme -i https://pypi.tuna.tsinghua.edu.cn/simple
  2. 启动 LabelMe: 安装完成后,可以通过命令行输入以下命令来启动 LabelMe:

  3. 使用方法

  •   点击  文件--->打开目录  加载要标记的图像

加载图片后效果:

  • 设置自动保存和输出路径

  • 标注:  点击  编辑-->创建矩形

在图像上标注你想要的物体并定义label

标注完成后点击下一张继续标记

完成标注后,结果默认保存为 JSON 文件,这些文件可以与其他工具(如 TensorFlow、PyTorch 等)一起使用以进行训练。

如果要使用YOLO训练,则需要使用json转yolo格式的脚本来生成满足yolo训练格式的label文件,如果不想麻烦,直接用后面两种工具,能直接输出yolo格式

转换代码如下:

import json
import os


def convert_json_to_yolo(json_file, labels_folder):
    # 读取 JSON 文件
    with open(json_file, 'r') as f:
        data = json.load(f)

    # 获取图像的宽度和高度
    image_width = data['imageWidth']
    image_height = data['imageHeight']

    # 获取图像文件名,并去掉前缀
    image_filename = os.path.basename(data['imagePath'])  # 提取纯文件名

    # 创建目标标签文件夹
    os.makedirs(labels_folder, exist_ok=True)

    # 创建对应的标签文件路径
    label_file_path = os.path.join(labels_folder, os.path.splitext(image_filename)[0] + '.txt')

    with open(label_file_path, 'w') as label_file:
        # 标签到索引的映射
        label_dict = {
            'bottle': 0,
            'tv': 1,
            'keyboard': 2,
            'knef': 3,
            'tissue': 4,
            'pencil': 5,
            'paper': 6
        }

        for shape in data['shapes']:
            # 获取标签和点
            label = shape['label']
            points = shape['points']

            # 计算矩形框的左上角和右下角坐标
            x1, y1 = points[0]
            x2, y2 = points[1]

            # 计算中心点 (cx, cy),宽度 (w) 和高度 (h)
            cx = (x1 + x2) / 2 / image_width
            cy = (y1 + y2) / 2 / image_height
            w = (x2 - x1) / image_width
            h = (y2 - y1) / image_height

            # 获取对应的标签索引
            label_index = label_dict.get(label)

            if label_index is not None:  # 检查标签是否在字典中
                # 写入 YOLO 格式中的一行
                label_file.write(f"{label_index} {cx} {cy} {w} {h}\n")
            else:
                print(f"Warning: Label '{label}' not found in label_dict.")


def process_all_json_files(json_folder, labels_folder):
    # 遍历输入文件夹中的所有 JSON 文件
    for filename in os.listdir(json_folder):
        if filename.endswith('.json'):
            json_file_path = os.path.join(json_folder, filename)
            print(f"Processing file: {json_file_path}")
            convert_json_to_yolo(json_file_path, labels_folder)


if __name__ == "__main__":
    json_folder = "data/valid/labelme"  # JSON 文件所在的文件夹
    labels_output_folder = "MyData/labels/val"  # 输出标签文件夹

    process_all_json_files(json_folder, labels_output_folder)

二、labelimg

  1. 安装: 在命令行中执行以下命令:

    pip install labelimg
    或者加镜像
    pip install labelimg -i https://pypi.tuna.tsinghua.edu.cn/simple
  2. 启动 Labelimg:直接命令行输入即可

    3.使用方法

      opendir 打开图片文件夹---> Creat RectBox 创建矩形框 标记 --->左边save下面的输出格式点一下会变一下,可以选自己想要的格式如yolo --->点击save即可保存标记结果

三、Makesense 

这是一个在线标记网站,界面很好看,网站地址https://www.makesense.ai/

使用方法:

点击右下角getstart 进入标记界面

点击Drop images导入你的图片数据

点击左边Object Detection 

这里你可以点击加号创建你的label列表,也就是你要标记的物体都有哪些名称,建议可以提前写下来方便等会标记用,也可以直接点右下角start project开始标记

标记后右上角会出现一个Select label 表示你的标记框,你可以点击它设置他的名字,如果你上一步没有提前设置label名称集,那么这里他会让你创建

标记完成后点击左上角actions-->export annotations

选择保存的格式,如第一个是yolo格式,点击export即可导出

AI辅助标记

此外,如果你想加速标记,可以采用导入本地训练模型帮助你标记,原理就是用图像检测的结果来辅助你标记,使用后,你会发现你上传的图片会有很多个框框,你只需要选择保留或者删除即可,使用方法如下:

点击actions -->run ai locally

选择yolov5模型,点击use model

此时他会弹出让你选择本地的文件,这个时候我们做以下操作:

需要有yolov5的项目代码(下载链接https://github.com/ultralytics/yolov5

1. 命令行安装tensorflowjs

 pip install tensorflowjs==2.8.5 -i https://pypi.tuna.tsinghua.edu.cn/simple

2. 执行export.py文件

首先打开yolov5项目,里面会有一个export.py的文件,使用以下指令执行它

 python export.py --weights yolov5s.pt --include tfjs  #weights可以使用自己训练的参数集

3. 执行结束后会在`yolov5s_web_model`文件夹下生成我们需要的文件,然后再在该文件夹创建一个`classes.txt`文件,内容为所有的类别名称,一行一个定格写

4. 此时我们就可以在网站中点击use model,把yolov5s_web_model文件夹下所有文件上传进去,就可以使用了

使用过程中会弹出一下界面,提示你加入一些标签,你可以接受或者拒绝

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值