关于DeepFaceLab的一些乱七八糟的小技巧

(一)移动工作目录“workspace”

(1.1)DFL的工作目录

无论是原版DFL,还是改版ICE版目录结构。
都是在DFL的根目录%DFLPATH下,有个workspace目录。

因为某种原因(比如ICE版本没有源码,没办法修改源码用nvenc)……
所以需要同时使用原版和ICE版时,得不时地把内容移动到两个workspace里面。
当然也很简单只需要Ctrl-X+Ctrl-V就搞定了。

能不能让两个DFL用同一个工作目录呢?
Yes!可以!

(1.2)修改工作目录

然后修改原版DFL的:%DFLPATH\_internal\setenv.bat
把WORKSPACE环境变量修改成你移动后的路径。

rem ========== ADDITIONAL ENV ==========
SET WORKSPACE=%INTERNAL%\..\workspace    <--就是这里
SET DFL_ROOT=%INTERNAL%\DeepFaceLab

同时修改ICE版本DFL的:%DFLICEPATH\_internal\setenvICE.bat + ice.bat
把WORKSPACE环境变量修改成你移动后的路径。

rem ========== ADDITIONAL ENV ==========
SET WORKSPACE=%INTERNAL%\..\workspace    <--就是这里
SET WORK=%INTERNAL%\..\workspace         <--还有这里
SET DFL_ROOT=%INTERNAL%\FaceAI-ICE

修改到同一个目录,就可以共用workspace了。
比如我的目录结构中,两个DFL和它们的公用workspace改为了同级:

d:/xx/DeepFaceLab_ICE_1601
d:/xx/DeepFaceLab_NVIDIA
d:/xx/workspace


(二)升级CUDA,CUDNN,FFMPEG

DFL的发布包,为了方便的下载即用,打包了很多内容。
其中N卡相关的CUDA,CUDNN,视频处理相关的FFMPEG,都在\DFL根目录\_internal下有对应的目录。
里面文件的版本都蛮久的了。

升级方式:

  1. 最简单办法:下载对应的新的版本,覆盖已有文件(但会造成多个项目的公用文件重复)。
  2. 或者在操作系统中安装CUDA,下载CUDNN加入操作系统path环境变量,下载FFMPEG加入操作系统path环境变量,
    之后直接删除_internal中对应的CUDA,CUDNN,FFMPEG目录(可选:然后修改setenv.bat,去除相关路径)。

(三)模型配置文件瘦身

如果某个模型迭代次数太高,比如两千万次,那么无论什么操作都会很慢。
同样的事情也发生在xseg模型上,每次使用加载都要几分钟。

但其实并不是模型导致的慢,而是模型配置文件中,记录了太多的迭代情况。
虽然这些迭代的记录可以让我们看到loss曲线的变化,但太多以后确实非常影响加载速度,配置文件也会特别大。
在这里插入图片描述

如果你不在乎看不到这个loss曲线了,可以用工具删掉loss历史,以及预览。
这样每次训练,合成,加载xeg的时候,都可以节省很多时间。

🔗项目地址
PS:这个工具是我自己写的(实在太慢不能忍)。

这个工具还可以增/删/改/查模型配置参数。

所以也可能被人用来改模型信息然后卖RMB,国内环境就是这样的,开源项目总是被人卖钱。
但是没有买卖就没有伤害,大家都不花钱买模型就好了。
明明很多人在免费分享,为啥要买呢。


(附)其它DeepFaceLab相关文章

一:《简单介绍DeepFaceLab(DeepFake)的使用以及容易被忽略的事项》
二:《继续聊聊DeepFaceLab(DeepFake)不断演进的2.0版本》
三:《如何翻译DeepFaceLab(DeepFake)的交互式合成器》
四:《想要提高DeepFaceLab(DeepFake)质量的注意事项和技巧(一)》
五:《想要提高DeepFaceLab(DeepFake)质量的注意事项和技巧(二)》
六:《友情提示DeepFaceLab(DeepFake)目前与RTX3080和3090的兼容问题》
七:《高效使用DeepFaceLab(DeepFake)提高速度和质量的一些方法》
八:《支持DX12的DeepFaceLab(DeepFake)新版本除了CUDA也可以用A卡啦》
九:《简单尝试DeepFaceLab(DeepFake)的新AMP模型》
十:《非常规的DeepFaceLab(DeepFake)小花招和注意事项》
土:《可以提高DeepFaceLab(DeepFake)合成最终视频速度的方法》
王:《偶然看到DeepFaceLab(DeepFake)在2023年的新动向》《测试通用遮罩》
区:《重新梳理DeepFaceLab(DeepFake)最近动态:简要且全面的信息》

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值