简单尝试DeepFaceLab(DeepFake)的新AMP模型

本文详细介绍了DeepFaceLab中的AMP模型,包括其变形因子功能和训练步骤。此外,还提到了常规模型SAEHD和快速模型Quick96的特点和适用场景。AMP模型在不同morphfactor值下能实现源和目标脸部的过渡效果,而SAEHD提供多样参数选择,Quick96则以牺牲分辨率换取快速出效果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

DeepFaceLab相关文章

一:《简单介绍DeepFaceLab(DeepFake)的使用以及容易被忽略的事项》
二:《继续聊聊DeepFaceLab(DeepFake)不断演进的2.0版本》
三:《如何翻译DeepFaceLab(DeepFake)的交互式合成器》
四:《想要提高DeepFaceLab(DeepFake)质量的注意事项和技巧(一)》
五:《想要提高DeepFaceLab(DeepFake)质量的注意事项和技巧(二)》
六:《友情提示DeepFaceLab(DeepFake)目前与RTX3080和3090的兼容问题》
七:《高效使用DeepFaceLab(DeepFake)提高速度和质量的一些方法》
八:《支持DX12的DeepFaceLab(DeepFake)新版本除了CUDA也可以用A卡啦》
九:《简单尝试DeepFaceLab(DeepFake)的新AMP模型》
十:《非常规的DeepFaceLab(DeepFake)小花招和注意事项》

一,不算太新的AMP模型

1.1 什么是AMP模型

在2021年5月30日的版本中,作者试验性的加入了AMP模型。
目前版本就有3个模型了:

  • AMP
  • Quick96
  • SAEHD

AMP:对应amplifier(放大器),因为目标的面部表情被放大到源脸。
这个模型可以控制morph factor(变形因子)参数,可以在合成前指定 0.01.0 的参数值。
当然还有很多具体的描述请看作者原文档吧。

1.2 训练AMP的步骤

  1. 需要足够多样的源脸数据集。

  2. 设置morph factor(变形因子)为0.5

  3. 运行6) train AMP SRC-SRC.bat脚本,训练源到源到50万次以上迭代 (越多越好)

  4. model目录中删除inter_dst文件

  5. 常规训练——也就是运行6) train AMP.bat

1.3 最终效果

测试的内容都删了,才发现忘记截图……只能文字举个例子。
在这里插入图片描述
AMP模型最大的特点就是合成时指定morph factor变形因子。

  • morph factor = 0.0:合成后完全是目标脸,等于根本没有换脸。
  • morph factor = 1.0:合成后完全是源脸。

所以当morph factor介于0.01.0之间时,合成效果就在更像源/更像目标之间浮动。
试了一下确实是这样,但是对比SAEHD似乎没找到AMP的优点,它到底是干嘛用的。

个人怀疑,它是不是用于源难以重现目标所有表情时的一个选择?
如果你知道,请不吝赐教。
.

二,其它模型及特点

2.1 SAEHD

平时用的正常的模型,有很多参数选择。
可以根据自己的显卡调整分辨率和学习网络的各种选项。
简称SAEHD:High Definition Styled AutoEncoder
之前各种文章都是用的这个模型(也没别的啊)。
.

2.2 Quick96

最快速的模型,没有任何选项,固定96分辨率,全脸。
因为固定了选项,所以会自动用作者提供的预训练数据(所以很快)。
可以用在低端显卡上,比如2GB+的NVidia,或者4GB+的AMD。.

用这个模型可以快速的试一下,出效果。
缺点是分辨率太低了,量变引起质变,有时导致最终效果不佳(不仅是分辨率)。
.

2.3 被移除的模型

  • TrueFace:只能N卡用,作者试了一下就移除了。
  • SAE:被SAEHD给替代了。
  • avatar :是不是给动漫用的,忘记了……反正被移除了,其效果可以被代替。
  • RecycleGAN:呃,完全没印象……
<think>好的,我现在需要帮用户解决如何搭建和训练DeepLab V3模型的问题。用户提到了TensorFlow和PyTorch,所以我得分别整理这两个框架下的方法。 首先,我得回想一下用户提供的引用内容。引用[1]提到了使用TensorFlow的官方文档和训练自己数据集的教程,引用[2]是PyTorch实现的Deeplab-v3plus项目,引用[3]提到了PyTorch的一些预训练模型,引用[4]涉及模型训练中的问题和注意力机制。这些引用应该能帮助我构建回答的结构。 接下来,我需要分步骤说明搭建和训练的过程。对于TensorFlow部分,用户需要安装TensorFlow Models库,配置环境,然后按照官方文档的步骤准备数据集和修改配置文件。这里可能需要参考引用[1]的GitHub链接和教程。 对于PyTorch,用户可以使用现有的开源实现,比如引用[2]中的项目,或者使用torchvision中的模型。引用[3]中的预训练模型可能有用,所以需要提到如何加载预训练权重。另外,数据加载和训练循环的示例代码也是必要的。 然后,训练自己数据集的关键点包括数据集准备、配置文件修改、训练参数调整,这部分需要结合引用[1]和引用[4]提到的迁移学习和超参数调优。可能还要注意数据增强和损失函数的选择。 在注意事项里,要提到预训练模型的重要性,学习率调整,数据增强方法,以及多GPU训练,这些都是训练深度学习模型时的常见问题,引用[4]中的超参数调优和模型部署也可能相关。 最后,生成相关问题需要考虑用户可能遇到的后续问题,比如性能调优、对比不同框架、数据准备和模型应用场景,这些都可以从引用中的内容延伸出来。 需要确保回答结构清晰,步骤详细,并且正确引用提供的资料。同时,检查是否有遗漏的步骤,比如环境安装或数据预处理的具体方法,是否需要更多代码示例等。可能还需要提醒用户参考官方文档以确保兼容性和最。</think>以下是如何使用TensorFlow/PyTorch搭建和训练DeepLab V3模型的详细指南: ### 一、TensorFlow实现 1. **环境配置** - 安装TensorFlow 2.x与模型库: ```bash git clone https://github.com/tensorflow/models.git cd models/research/ protoc deeplab/protos/*.proto --python_out=. pip install -r deeplab/requirements.txt ``` 引用官方环境配置说明[^1] 2. **模型搭建** ```python from deeplab import common from deeplab import model # 初始化Xception+DeepLabV3+ deeplab_model = model.multi_scale_logits( inputs, model_options=common.ModelOptions(output_stride=16), image_pyramid=[1.0]) ``` 3. **数据集准备** - 需创建TFRecord格式数据集 - 标注文件需符合PASCAL VOC格式 ### 二、PyTorch实现 1. **使用开源实现** ```bash git clone https://gitcode.com/gh_mirrors/de/Deeplab-v3plus ``` 推荐使用该PyTorch优化版本[^2] 2. **构建基础模型** ```python import torchvision model = torchvision.models.segmentation.deeplabv3_resnet50( pretrained=True, progress=True, num_classes=21) ``` ### 三、训练自定义数据集 1. **关键配置项** - 修改`train.py`中的数据集路径 - 调整`base_learning_rate`(建议0.007) - 设置训练轮数`training_number_of_steps` 2. **启动训练** ```bash # TensorFlow python deeplab/train.py \ --logtostderr \ --training_number_of_steps=30000 \ --train_split="train" \ --model_variant="xception_65" \ --atrous_rates=6 --atrous_rates=12 --atrous_rates=18 \ --output_stride=16 \ --train_crop_size=513,513 # PyTorch python train.py --dataset pascal --model deeplabv3plus_resnet50 ``` ### 四、注意事项 1. **预训练模型**:推荐使用COCO或PASCAL VOC预训练权重进行迁移学习[^4] 2. **数据增强**:需包含随机缩放(0.5-2.0)、水平翻转、颜色抖动 3. **学习策略**:采用poly学习率衰减策略 $$ lr = base\_lr \times (1 - \frac{iter}{max\_iter})^{power} $$ 通常设置power=0.9 ### 五、性能优化建议 - 使用混合精度训练(AMP- 多GPU分布式训练 - 采用渐进式输出步长策略(从output_stride=32逐步到8)
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值