086基于深度学习的安全带是否佩戴检测

本文介绍了基于深度学习的几种安全带佩戴检测方法,包括目标检测、关键点检测、骨骼关键点检测和图像分割。通过使用ResNet、MobileNet等网络结构,结合大量标注数据训练模型,实现对人体安全带佩戴情况的准确判断。提供了相关代码和模型训练的详细过程,以及训练指标和可视化界面的展示。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

基于深度学习的安全带是否佩戴检测有以下几种常见的方法:

  1. 传统的目标检测方法:可以使用一些经典的目标检测算法,如Faster R-CNN、YOLO等,训练一个模型来检测图像中的人和安全带。通过识别人体姿态和位置,判断安全带是否正确佩戴。

  2. 关键点检测方法:通过训练一个人体关键点检测模型,可以得到人体关键点的坐标信息,包括头部、肩膀、手臂等关键点。根据关键点之间的相对位置和角度,可以推断安全带是否正确佩戴。

  3. 骨骼关键点检测方法:通过深度学习模型,可以从图像或视频中提取人体的骨骼关键点信息。从而判断安全带是否正确佩戴,比如检测肩部和腰部之间的连线是否与安全带有交叉。

  4. 图像分割方法:使用图像分割技术,将人体和安全带进行像素级别的分割,然后根据分割结果判断安全带是否被正确佩戴。

这些方法可以结合深度学习的网络架构,如ResNet、MobileNet等,进行模型的训练与优化。需要大量标注好的含有安全带佩戴情况的图像数据集来训练模型,并进行适当的调参和评估,以获得较好的检测效果。

​demo仓库和视频演示找086期:

到此一游7758258的个人空间_哔哩哔哩_bilibili

效果展示图如下:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值