对弧长的曲线积分
我们看两个具体的例子来理解
曲形构件的质量
如图1所示,坐标系中的曲形构件密度不均匀

设曲线的长为
,线密度为连续函数
用点将曲线分成
个小弧段
任取
这一小段构件的质量的近似值为
构件的质量为
也就是
沿切线方向的变力做功
如图2所示,变力沿曲线做功
在点处,力的大小为
,力的方向与该点的切线方向相同
那么所做的功为,(求解思路与上面的求曲形构件的质量相同)

对坐标的曲线积分
方向不变,大小变化的力沿曲线做功
如图3所示
我们可以用微元法求得,力沿曲线所做的功为
也就是对坐标的曲线积分

两种积分之间的关系
怎样找到函数和
,使
和
等价?
如图2所示,用点将曲线分成
个小弧段
其中
因为沿切线方向,所以
也就是存在,
使和
等价