【高数】对弧长的曲线积分与对坐标的曲线积分

对弧长的曲线积分

我们看两个具体的例子来理解

曲形构件的质量

如图1所示,坐标系中的曲形构件密度不均匀

图1

设曲线\overset{\frown}{AB}的长为l,线密度为连续函数\rho=\rho(x,y)

用点M_{1},M{2},\dots,M_{n-1}将曲线分成n个小弧段\Delta s_i\,(i=1,2,\dots,n)

任取(x_i,y_i)\in\Delta s_i

这一小段构件的质量\Delta m_i的近似值为\rho(x_i,y_i)\Delta x_i

构件的质量为m=\sum_{i=1}^{n}m_i\approx\sum_{i=1}^n\rho(x_i,y_i)\Delta x_i

也就是\int_L\rho(x,y)\text{d}s

沿切线方向的变力做功

如图2所示,变力沿曲线\overset{\frown}{AB}做功

在点(x_i,y_i)处,力的大小为f(x_i,y_i),力的方向与该点的切线方向相同

那么所做的功为\int_Lf(x,y)\text{d}x,(求解思路与上面的求曲形构件的质量相同)

图2

对坐标的曲线积分

方向不变,大小变化的力沿曲线做功

如图3所示

\vec{F}(x,y)=P(x,y)\vec{i}+Q(x,y)\vec{j}

我们可以用微元法求得,力沿曲线\overset{\frown}{AB}所做的功为

\int_LP(x,y)\text{d}x+Q(x,y)\text{d}y

也就是对坐标的曲线积分

图3

两种积分之间的关系

怎样找到函数P(x,y)Q(x,y),使\int_LP(x,y)\text{d}x+Q(x,y)\text{d}y\int_Lf(x,y)\text{d}x等价?

如图2所示,用点M_{0},M_{1},\dots,M_{n}将曲线分成n个小弧段M_{i-1}M_{i}

\int_Lf(x,y)\text{d}x=\sum_{i=1}^{n}f_i\cdot|M_{i-1}M_{i}|\quad(\lambda=|M_{i-1}M_{i}|_{min}\rightarrow0)

其中

\vec{f_i}=f(x,y)\cos{\alpha}\vec{i}+f(x,y)\sin{\alpha}\vec{j}

|\vec{f_i}|=f(x_i,y_i)

\vec{M_iM_{i-1}}=\Delta x_i \vec{i}+\Delta y_i\vec{j}

|M_iM_{i-1}|=\sqrt{(\Delta x)^2+(\Delta y)^2}

因为\vec{f}沿切线方向,所以\vec{f_i}\cdot\vec{M_{i-1}M_i}=|\vec{f_i}|\cdot|\vec{M_{i-1}M_i}|

\vec{f_i}\cdot\vec{M_{i-1}M_{i}}=f(x,y)\cos{\alpha}\Delta x+f(x,y)\sin{\alpha}\Delta y

也就是存在P(x,y)=f(x,y)\cos{\alpha}\,,Q(x,y)=f(x,y)\sin{\alpha},

使\int_LP(x,y)\text{d}x+Q(x,y)\text{d}y\int_Lf(x,y)\text{d}x等价

  • 7
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值