[每日算法15分钟] 生成斐波那契数列第N项

算法分析是我最喜欢的课程之一。一个精妙的算法,犹如一杯香浓的咖啡,让人意犹未尽。
算法代码,python。

今天分享的这个算法是生成斐波那契数列第N项。
斐波那契数列(Fibonacci sequence)
F 0 = 0 , F 1 = 1 , F 2 = 1 , . . . , F n = F n − 2 + F n − 1 F_0=0, F_1 = 1, F_2 = 1, ... ,F_n = F_{n-2}+F_{n-1} F0=0,F1=1,F2=1,...,Fn=Fn2+Fn1

写一个方法def fibonacci(n) 生成 F n F_n Fn项,输入参数n表示序列号,返回值是 F n F_n Fn的值:

直观朴素的算法:

def fibonacci(n):
    if n == 0: 
        return 0
    elif n == 1:
        return 1
    elif n > 1:
        return fibonacci(n-2) + fibonacci(n-1)

print(fibonacci(7))

使用这个递归算法,效率如何呢?
当n = 0时,该方法调用次数是1
当n = 1时,该方法调用次数是1
当n = 2时,该方法调用次数是3
在这里插入图片描述
当n = 3时,该方法调用次数是5
在这里插入图片描述
当n = 4时,该方法调用次数是9
在这里插入图片描述
以此类推,
当n = 5时,该方法调用次数是15
当n = 6时,该方法调用次数是25
随着n的增长,该算法的复杂度呈指数级增长,这是很糟糕的情况,如果n值大一些,那就有可能超出编程语言的最大递归次数而无法获得有效结果。

有没有更高效的算法?
仔细观察上图,你会发现在计算过程中会出现许多重复调用,比如fibonacci(0)被重复调用了2次,fibonacci(1)被重复调用了3次。因此,我们可以把之前算过的结果存下来。

直观的顺序算法

def fibonacci(n):
    f_n_1 = 0
    f_n_2 = 1
    if n == 0:
        return f_n_1
    elif n == 1:
        return f_n_2
    else:
        for i in range(n-1):
            f_n = f_n_2 + f_n_1
            f_n_2 = f_n_1
            f_n_1 = f_n
        return f_n
print(fibonacci(7))

以上这个算法记录 f n − 2 f_{n-2} fn2 f n − 1 f_{n-1} fn1的值,避免了重复运算,算法复杂度是线性的,效率较之前提升了不少。

那还有没有更高效的算法?

递归平法算法

有的,可以利用矩阵的n次方来计算斐波那契数列。
F 0 = 0 , F 1 = 1 , F 2 = 1 , 则 , { F 2 , F 1 F 1 , F 0 } = { 1 , 1 1 , 0 } 1 F_0 = 0, F_1=1, F_2 = 1, 则, \left\{ \begin{matrix} F_2, F_1 \\ F_1,F_0 \end{matrix} \right\} = \left\{ \begin{matrix} 1, 1\\ 1,0 \end{matrix} \right\}^1 F0=0F1=1,F2=1,{F2,F1F1,F0}={1,11,0}1

假 设 , { F n − 1 , F n − 2 F n − 2 , F n − 3 } = { 1 , 1 1 , 0 } n − 2 假设,\left\{ \begin{matrix} F_{n-1}, F_{n-2} \\ F_{n-2}, F_{n-3} \\ \end{matrix} \right\} = \left\{ \begin{matrix} 1, 1\\ 1,0 \end{matrix} \right\}^{n-2} ,{Fn1,Fn2Fn2,Fn3}={1,11,0}n2

{ F n − 1 , F n − 2 F n − 2 , F n − 3 } { 1 , 1 1 , 0 } = { F n − 1 + F n − 2 , F n − 1 F n − 2 + F n − 3 , F n − 2 } = { F n , F n − 1 F n − 1 , F n − 2 } \left\{ \begin{matrix} F_{n-1}, F_{n-2} \\ F_{n-2}, F_{n-3} \\ \end{matrix} \right\} \left\{ \begin{matrix} 1, 1\\ 1,0\\ \end{matrix} \right\} = \left\{ \begin{matrix} F_{n-1}+F_{n-2},F_{n-1} \\ F_{n-2}+F_{n-3},F_{n-2} \\ \end{matrix} \right\} = \left\{ \begin{matrix} F_n, F_{n-1}\\ F_{n-1}, F_{n-2} \end{matrix} \right\} {Fn1,Fn2Fn2,Fn3}{1,11,0}={Fn1+Fn2,Fn1Fn2+Fn3,Fn2}={Fn,Fn1Fn1,Fn2}

由 此 , { F n , F n − 1 F n − 1 , F n − 2 } = { 1 , 1 1 , 0 } n − 1 由此,\left\{ \begin{matrix} F_n, F_{n-1} \\ F_{n-1}, F_{n-2} \end{matrix} \right\}= \left\{ \begin{matrix} 1, 1\\ 1,0 \end{matrix} \right\}^{n-1} {Fn,Fn1Fn1,Fn2}={1,11,0}n1

因此,我们可以通过计算 { 1 , 1 1 , 0 } n − 1 \left\{ \begin{matrix} 1, 1\\ 1,0 \end{matrix} \right\}^{n-1} {1,11,0}n1来获得 F n F_n Fn的值。

计算 { 1 , 1 1 , 0 } n \left\{ \begin{matrix} 1, 1\\ 1,0 \end{matrix} \right\}^n {1,11,0}n则可以使用以下递归算法。

{ 1 , 1 1 , 0 } n = { { 1 , 1 1 , 0 } ( n − 1 ) / 2 . { 1 , 1 1 , 0 } ( n − 1 ) / 2 . . . n 是 奇 数 { 1 , 1 1 , 0 } n / 2 . { 1 , 1 1 , 0 } n / 2 . . . n 是 偶 数 \left\{ \begin{matrix} 1, 1\\ 1,0 \end{matrix} \right\}^n=\biggl\{^{\left\{ \begin{matrix} 1, 1\\ 1,0 \end{matrix} \right\}^{n/2}.\left\{ \begin{matrix} 1, 1\\ 1,0 \end{matrix} \right\}^{n/2} ...n是偶数} _{\left\{ \begin{matrix} 1, 1\\ 1,0 \end{matrix} \right\}^{(n-1)/2}.\left\{ \begin{matrix} 1, 1\\ 1,0 \end{matrix} \right\}^{(n-1)/2} ...n是奇数} {1,11,0}n={{1,11,0}(n1)/2.{1,11,0}(n1)/2...n{1,11,0}n/2.{1,11,0}n/2...n

def fibonacci(n):
    if n == 0:
        return 0
    if n == 1:
        return 1 
    else:
        f_matrix = fibonacci_matrix(n)
        return f_matrix[0][0]
        
def fibonacci_matrix(n): 
    if n < 2:
        return -1
    elif n == 2:
        f_n = 1
        f_n_1 = 1
        f_n_2 = 0
    elif n > 1 and n%2 == 0:
        f = fibonacci_matrix(n/2)
        f_n = f[0][0]* f[0][0] + f[0][1]*f[1][0]+f[0][0]* f[0][1] + f[0][1]*f[1][1]
        f_n_2 = f[0][0]* f[0][1] + f[0][1]*f[1][1]
        f_n_1 = f_n-f_n_2        
    else:
        f = fibonacci_matrix((n+1)/2)
        f_n = f[0][0]* f[0][0]+f[0][1]* f[1][0]
        f_n_1 = f[0][0]* f[0][1]+f[0][1]*f[1][1]
        f_n_2 = f_n - f_n_1
    return [[f_n,f_n_1],[f_n_1,f_n_2]] 

这个算法的复杂度时对数级的,比之前的算法又有改进。

我们可以来看一下,算法二和算法三的速度对比,分别是n=10000,n=50000,n=100000时的耗时,随着n的增长算法三的优势就显而易见了。
算法二

1st run - n=10000 :
0:00:00.004448
2nd run - n=50000:
0:00:00.038660
3rd run - n=100000:
0:00:00.164054

算法三

Recursive Squaring
1st run - n=10000 :
0:00:00.000158
2nd run - n=50000:
0:00:00.001296
3rd run - n=100000:
0:00:00.005507

今天的斐波那契数列算法就讲到这里。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

编程小白的逆袭日记

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值