【深度学习笔记】resnet两种结构具体怎么实现,bottleneck为什么可以降低计算量及模型大小

本文介绍了ResNet网络的结构,包括18、34、50、101、152五种不同深度的版本。ResNet18和34基于BasicBlock构建,而更深层的ResNet50、101和152则采用Bottleneck设计。Bottleneck结构通过1x1卷积降低和恢复维度,减少了参数数量,实现了网络的高效。ResNet的重要设计原则是特征图尺寸减半时,通道数加倍,保持网络复杂度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


图1是论文里给出每种ResNet的具体结构

ResNet在PyTorch的官方代码中共有5种不同深度的结构,深度分别为18、34、50、101、152(各种网络的深度指的是“需要通过训练更新参数”的层数,如卷积层,全连接层等)

图1
在这里插入图片描述

不同深度的网络结构由不同的子模块搭建,(1) 一种基于BasicBlock,浅层网络ResNet18, 34都由BasicBlock搭成;(2) 另一种基于Bottleneck,深层网络ResNet50, 101, 152乃至更深的网络,都由Bottleneck搭成。如图2所示,左侧为BasicBlock,右侧为Bottleneck的结构。
在这里插入图片描述


右边结构中的第一个1x1卷积,用于降低维度第二个1x1卷积用于升高维度,第一个1x1的卷积把256维channel降到64维,然后在最后通过1x1卷积恢复,整体上用的参数数目:1x1x256x64 + 3x3x64x64 + 1x1x64x256 = 69632,而不使用bottleneck的话就是两个3x3x256的卷积,参数数目: 3x3x256x256x2 = 1179648差了16.94倍
ResNet的一个重要设计原则是:当feature map大小降低一半时,feature map的数量增加一倍,这保持了网络层的复杂度。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

onnx

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值