数理逻辑(一):逻辑学初步

第1章 逻辑学初步


本文为原创文章,转载请注明出处,并注明转载自“黄邦勇帅(原名:黄勇)”
本文是对《C++语法详解》一书相关章节的增补,以增强读者对数学方面的理解,《C++语法详解》网盘地址:https://pan.baidu.com/s/1dIxLMN5b91zpJN2sZv1MNg

有兴趣的读者可参阅本人所著《C++语法详解》一书,电子工业出版社出版,该书语法示例短小精悍,对查阅C++知识点相当方便,并对语法原理进行了透彻、深入详细的讲解,可确保读者彻底弄懂C++的原理,彻底解惑C++,使其知其然更知其所以然。此书是一本全面了解C++不可多得的案头必备图书。

由于能力有限,文中难免有错漏之处,望广大读者指出更正,不胜感激
本文主要参考自“百度百科相关词条”
————————————————

1.1 逻辑学的基本概念

1、逻辑学

逻辑学是关于思维规律的学说,思维规律是思维内容与思维形式的统一。所以思维有内容和形式两个方面,人的认识要实现对客观世界的反映,就需要实现思维内容和思维形式的统一,否则,就不能实现这个反映。

2、思维内容

思维内容是指思维所反映的对象及其属性。例如,数学中的数量与图形等对象;物理学中的声、光、电、力等对象;政治经济学中的生产关系、商品、价值等对象

3、思维形式

思维形式是指用以反映对象及其属性的不同方式,即,用词语表达的概念、用语句所表达的判断,用复句表达的推理(即,概念、判断、推理)等

3、示例1(理解内容、形式、概念、判断):

(1)、张三是教师
(2)、地球是圆的

  • 以上语句是两个判断,可将判断理解为:张三是否是教师,地球是否是圆的是需要进行判断的,因此,语句(1)和(2)是两个判断。
  • 以上两个判断涉及“张三”和“地球”两个对象,这就是思维内容。
  • 以上两上判断具有相同的形式,即“…是…”,这就是思维形式
  • 如果将“张三”和“地球”使用P表示,“教师”和“圆的”使用S表示,则以上两个判断都具有相同的形式“P是S”
  • 如果将语句(1)使用p表示,语句(2)使用q表示,则p和q表示两个判断。
  • 以上两上判断中都包含逻辑常项和逻辑变项,常项决定逻辑的形式,而变项是可变的项,如语句(1)和(2)中的“张三”、“教师”、“地球”、“圆的”是变项,“是”是常项。也可以说成,P和S变项,且是概念变项,p和q是变项,且是判断变项。

4、示例2:

(3)、如果两个角是对顶角,那么这两个角是相等的;这两个角是对顶角,所以,这两个角是相等的。

  • 以上语句可将其形式化为:

    如果P是S,那么P是Q;P是S,所以,P是Q

  • 若将判断“P是S”使用p表示,“P是Q”使用q表示,则以上语句可进一步形式化为

    如果p,那么q;p,所以,q

    其中,P、S、Q是概念变项,“是”是概念常项,p、q是判断变项,“如果”,“那么”,“所以”是判断常项。

5、下面对概念和对象作一简介

人们在社会实践中通过感官接受外界的消息,从而形成所谓的表象,同类表象的反复出现就在人的大脑中建立起了一个概念。概念具有一类表象的本质属性,这被称为概念的内涵,而所有衍生出该概念的具有特定表象的事物(即,对象)就形成了概念的外延,即,对象是概念的处延。比如,人们把苹果、香蕉、菠罗等具有各种特定香味而含有营养和水份的植物的果实概括为“水果”这一概念,但现实世界并不存在某一个具体的水果,因为,水果这一概念包涵了每一个苹果、香蕉、菠罗、梨等等。我们可以向别人展示一个具体的梨、香蕉,并说“这是一只梨,它是一种水果”,但我们却无法展示水果是什么。所以,概念是存在于人脑之中的对现实世界中某些对象的抽象,只存在于人的思维中,而水果这一概念的外延(即,对象)是客观世界中存在的所有有水果属性的个体组成的,说简单点就是,概念存在于思维之中,而对象存在于客观世界,这里对对象存在于客观世界的意思是指,人们不可能杜撰出一个根本不反映任何客观事物本质属性的概念,若有这样的概念,则只存在于迷信或神话之中,如,时间、空间等概念。本文所讲述的数理逻辑和概念、对象的关系并不大,所以,仅需理解即可,数理逻辑主要研究的是如何从一组已知的判断中,通过有效推理而最终获得一个全新判断的逻辑学分支。

6、逻辑学分为形式逻辑、辩证逻辑和数理逻辑。


1.2 形式逻辑


一、形式逻辑基础

1、形式逻辑也叫普通逻辑、传统逻辑、亚里士多德逻辑,狭义指演绎逻辑,广义还包括归纳逻辑。形式逻辑是精确、严密的推理形式

2、各名称的来历如下:
1)、19世纪中叶以前的形式逻辑主要是传统逻辑,也称为亚里士多德逻辑。亚里士多德论述形式逻辑的代表作有《形而上学》和《工具论》。
2)、亚里士多德逻辑是西方形式逻辑、传统逻辑的起点,所以,又叫传统逻辑
3)、亚里士多德逻辑专门研究思想的形式,所以又叫形式逻辑。
4)、亚里士多德逻辑的推理是使用的演绎法来推理,所以又叫演绎逻辑

3、形式逻辑只研究思维形式而不研究思维内容,涉及思维内容方面的问题是其他具体科学所研究的对象。形式逻辑并不是要把思维形式和思维内容割离开来,相反的,形式逻辑研究思维形式,正是为了使人们自觉地掌握思维形式的规律,从而更好地把思维形式和思维内容结合起来以正确反映客观现实。

4、形式逻辑的步骤大约是,形成概念(即通过认识事物形成概念),进行判断,再推理(主要包括归纳推理与演绎推理)。

5、演绎推理与归纳推理
演绎推理是从一般到特殊的推理,归纳推理是从特殊到一般的推理,演绎推理与归纳推理是相对的

二、演绎推理

1、演绎推理是指的从一般性的前提出发,通过推导即“演绎”,得出具体陈述或个别结论的过程(即通过前提推出结论)。所以,演绎推理是从一般到特殊的推理。演绎推理的前提与结论之间具有充分条件或充分必要条件的联系。演绎推理是与归纳法相对的。

2、演绎推理是严格的逻辑推理,其形式有:三段论、假言推理和选言推理、关系推理等。

3、三段论

三段论包含大前提、小前提、结论三个部分,例如:

科学家都是应该受到尊敬的,物理学家都是科学家,所以,物理学家都是应该受到尊敬的

以上示例具有“M都是P,S都是M,S都是P”的形式,其中

  • 小项(用“S”表示)是指:结论中的主项,如上例中的“物理学家”;
  • 大项(用“P”表示)是指:结论中的谓项,如上例中的“受到尊敬的”;
  • 中项(用“M”表示)是指:两个前提中共有的项,如上例中的“科学家”。
  • 大前提是指:“M都是P”,
  • 小前提是指:“S都是M”
  • 结论是指:“S都是P”
  • 注:“M都是P”,“S都是M”,“S都是P”就是逻辑学中的判断,比如,物理学家都是科学家,这是一个判断,具有形式“S都是M”。

可以看到,三段论推理是根据两个前提所表明的中项M与大项P和小项S之间的关系,通过中项M的媒介作用,从而推导出确定小项S与大项P之间关系的结论

4、假言推理

1)、假言推理是以假言判断为前提的推理,分为充分条件假言推理和必要条件假言推理。

2)、充分条件假言推理的基本原则是:
小前提肯定大前提的前件,结论就肯定大前提的后件;小前提否定大前提的后件,结论就否定大前提的前件。比如:

如果整数的末位是偶数,那么这个整数能被2整除;(大前提)
这个整数的末位是偶数,(小前提:肯定大前提前件)
所以这个整数能被2整除。(结论:肯定大前提后件)

3)、必要条件假言推理的基本原则是:
小前提肯定大前提的后件,结论就要肯定大前提的前件;小前提否定大前提的前件,结论就要否定大前提的后件。比如:

只有整数的末位是偶数,这个整数才能被2整除;(大前提)
这个整数能被2整除,(小前提:肯定大前提后件)
所以这个整数的末位是偶数。(结论:肯定大前提前件)

5、选言推理

1)、选言推理是以选言判断为前提的推理,分为相容和不相容的选言推理。

2)、相容的选言推理的基本原则是:
大前提是一个相容的选言判断,小前提否定了其中一个(或一部分)选言支,结论就要肯定剩下的一个选言支。比如:

这个三段论的错误,或者是前提不正确,或者是推理不符合规则(大前提);
这个三段论的前提是正确的,(小前提:否定其中一支)
所以,这个三段论的错误是推理不符合规则(结论:剩下的一支)

3)、不相容的选言推理的基本原则是:
大前提是个不相容的选言判断,小前提肯定其中的一个选言支,结论则否定其它选言支;小前提否定除其中一个以外的选言支,结论则肯定剩下的那个选言支。例如:

一个三角形,要么是锐角三角形,要么是钝角三角形,要么是直角三角形。
这个三角形不是锐角三角形和钝角三角形,(小前提:否定其中两支)
所以,它是个直角三角形。(结论:仅剩下的一支)

6、关系推理

关系推理是前提中至少有一个是关系命题的推理。比如

对称性关系推理:a = b,所以,b = a;
反对称性关系推理,a > b,所以,b < a ;
传递性关系推理,a>b,b>c,所以,a > c。

7、演绎推理有如下两个重要缺点

  • 1)、由于结论包含在前提之中,因此,不能产生新知识。如,由“人都会死”为前提,可推得“张三必死”的结论,但这个结论并没有产生任何新知识,因为,前提“人都会死”就包含了“张三必死”
  • 2)、演绎推理不能证明其前提的正确性。因为,演绎推理必以一定的基本原理为前提,在不引入更基本的基本原理之前,这些基本原理不可能通过演绎推理本身被发现或证明,而引入更基本的基本原理之后,这些新引入的基本原理必然又不能被演绎推理本身所证明或发现,以此类推,演译推理必须存在一些先验的、根本性的、绝对的真理。

8、虽然演绎逻辑有以上两个缺点,但不代表没有用或意义。
比如,欧几里德几何学就是一门严密的演绎体系,它从几个少数的公理出发推导出众多定理,再用这些定理去解决实际问题。这种演绎系统和公理化方法,至今仍是科学工作者不可离开的东西。爱因斯坦说:理论家的工作可分成两步,首先是发现公理,其次是从公理推出结论

三、归纳推理

1、归纳推理常被称为或然性推理、扩展性推理、盖然性推理、概然性推理

2、归纳推理是指从特殊到一般的逻辑推理

3、归纳推理具有以下特点

归纳推理从真前提只能或然地(并非必然地)推出真结论,前提与结论间不具有蕴涵关系,即从真前提不能必然而只能或然地推出真结论,也就是说,归纳推理的前提是真实的,但结论却未必真实,而可能为假。比如根据某天在路边捡到100块钱,就推出每天都能在路边捡到100块钱,这一结论很可能是假的,除非发生一些特殊情况。

4、归纳推理的分类

根据前提所考察对象范围的不同,把归纳推理分为
1)、完全归纳推理
2)、不完全归纳推理。不完全归纳推理是根据某类事物部分对象都具有某种属性,从而推出该类事物都具有该种属性的结论。不完全归纳推理又分为

  • 简单枚举归纳推理,详见下文
  • 科学归纳推理,详见下文

5、可以用归纳强度来说明归纳推理中前提对结论的支持度。支持度小于50%的,则称该推理是归纳弱的;支持度小于100%但大于50%的,称该推理是归纳强的;归纳推理中只有完全归纳推理前提对结论的支持度达到100%,支持度达到100%的是必然性支持。

6、演绎推理与归纳推理的区别

  • 1)、演绎推理是从一般到特殊(个别)的推理,是一个必然地得出的思维进程。演绎推理可以从一般到一般,可以从个别到个别,可以从“个别和一般”到个别,还可以从“个别和一般”到一般,而归纳推理的思维进程是从个别到一般
  • 2)、归纳推理要求大前提,小前提必须为真。演绎推理则没有这个要求。
  • 3)、结论所断定的知识范围不同。演绎推理的结论没有超出前提所断定的知识范围。归纳推理除了完全归纳推理,结论都超出了前提所断定的知识范围。
  • 4)、演绎推理的前提与结论间的联系是必然的,也就是说,前提真实,推理形式正确,结论就必然是真的。归纳推理除了完全归纳推理前提与结论间的联系是必然的外,前提和结论间的联系都是或然的,也就是说,前提真实,推理形式也正确,但不能必然推出真实的结论。

7、简单枚举归纳推理

1)、简单枚举归纳推理是指根据已观察到的部分对象都具有某种属性,且没有遇到任何反例,从而推出该类事物都具有该种属性的结论,简单枚举归纳推理的结论是或然的,因为其结论超出了前提所断定的知识范围。例如:

19=3+5+11
31=5+7+19
53=7+17+29
157=23+31+103
然后就得出结论“奇数都分别等于三个素数之和”,哥德巴赫猜想就是用的简单枚 举归纳推理提出该结论来的

2)、简单枚举归纳推理的逻辑形式如下:

S1是P
S2是P
……
Sn是P
S1,S2,…,Sn是S类的部分对象,并且其中没有S不是P
所以,所有S是P

8、科学归纳推理

1)、科学归纳推理是根据某类事物中部分对象与某种属性间因果联系的分析,推出该类事物具有该种属性的推理。例如:

金受热后体积膨胀;
银受热后体积膨胀;
铜受热后体积膨胀;
铁受热后体积膨胀;
因为金属受热后,分子的凝聚力减弱,分子运动加速,分子彼此距离加大,从而导致膨胀,而金,银,铜,铁都是金属;
所以,所有金属受热后体积都膨胀。

上例在前提中不仅考察了一类事物的部分对象有某种属性,而且进一步指出了对象与属性之间的因果联系,由此推出结论。这就是科学归纳推理。

2)、科学归纳推理的形式如下:

S1是P
S2是P
……
Sn是P
S1,S2,…,Sn是S类的部分对象,其中没有Si(1≤i≤n)不是P;
并且科学研究表明,S和P之间有因果联系
所以,所有S都是P

四、数学归纳法

1、数学归纳法(Mathematical Induction, MI)是一种数学证明方法,通常被用于证明某个给定命题在整个(或者局部)自然数范围内成立。除了自然数以外,广义上的数学归纳法也可以用于证明一般良基结构,例如:集合论中的树。这种广义的数学归纳法应用于数学逻辑和计算机科学领域,称作结构归纳法。

2、数学归纳法属于完全严谨的演绎推理法,虽然名字中有“归纳”二字,但是数学归纳法并非不严谨的归纳推理法

3、数学归纳法的步骤

1)、最简单和常见的数学归纳法是证明当n等于任意一个自然数时某命题成立。

2)、数学归纳法的证明分为以下步骤(注意:命题需对自然数有关):

  • ①、基础步(第一步):证明当n= 1时命题成立。
  • ②、归纳步(第二步):假设n=m时命题成立,如果可以推导出在n=m+1时命题也成立。(m代表任意自然数)
  • ③、结论:则根据①、②,命题对于所有n成立
  • 注意:在第2步的推导过程中不能直接将n=m+1代入假设的原式中去,必须在假设的n = m的基础上,推出n = m+1成立。

4、数学归纳法的原理为:

1)、原理在于第一步证明起始值在表达式中是成立的,然后证明一个值到下一个值的证明过程是有效的(即从n=m到n=m+1)。如果这两步都被证明了,那么任何一个值的证明都可以被包含在重复不断进行的过程中,下面是对原理的详细说明。

  • ①、首先证明在某个起点值时(即n=1)命题成立
  • ②、然后证明从“假设的n=m 命题成立”可以推导出n=m+1 命题也成立(这里实际应用的是演绎推理)
  • ③、若以上两条成立,则可得到
    • 当n=1时(命题)成立,可以推导出n=1+1,也就是n=2 时成立。
    • 继续推导,从n=2成立可以推得n=3 成立
    • 从 n=3 成立可以推导出n=4 也成立
    • 不断重复这个推导过程(这就是所谓“归纳”推理)
    • 便可以下结论:对于任意非零自然数n,公式成立。

2)、可将数学归纳法理解为多米诺骨牌,即,如果可以:

  • 证明第一张骨牌会倒。
  • 证明只要任意一张骨牌倒了,那么与其相邻的下一张骨牌也会倒。
  • 那么便可以下结论:所有的骨牌都会倒下。

5、示例1

证明所有的马都只有一种颜色(注:这是个错误的结论)

本示例主要用于演示数学归纳法的每一步(虽然总共就两步)都很重要,否则就会得出错误的荒谬的证明。

1)、谬证
①、第一步:n = 1时,该命题成立,即,只有1匹马时,马的颜色只有一种,这很明显
②、第二步:设该命题对n成立,即,假设任何n匹马都只有一种颜色,于是,当有n + 1匹马时,若将其编号为

1, 2, 3, …, n, n+1

则,其中的(1,2,3,…,n),由假设“n匹马都只有一种颜色”,可以得到,它们都是同一种颜色
同理,其中的(2,3,4,…,n+1),由假设,可推得这n匹马也只有一种颜色。
由于两组中都有(2,3,4,…,n)这些马,所以可以推得,这n+1种马都是一种颜色。

2)、对以上谬证的分析

以上谬证错在第二步

当n =1时,此时n+1 = 2,此时的马只能编号为

1, 2

若对其分组,只能分成以下两组

(1)
(2)

每一组都只有一匹马,并且两组中唯一的一匹马彼此之间并没有交集,谬证中当n = n+1时,与n匹马有交集(2,3,4,…,n),由此交集才推得n+1种马都是一种颜色的,但n = 1与n + 1 =2时彼此无交集,所以此步产生错误,最终导致结论不能成立。

数学归纳法第二步要求n到n+1的过程中,对n = 1,2,3,…的所有数都成立,此处的谬证在n =1时就不成立了,相当于是多米诺骨牌的第一块和第二块间的间隔太大,推倒了第1块,但不能推倒第2块,虽然第2块倒下后会推倒第3,4,5…等,但这个过程在第1块和第2块之间就中断了,从而导致结论不能成立。

6、示例2:证明等比数列求和公式

设, Sn = a1 + a2 + a3 + … a n = a1 + a1∙q + a1∙q2 + … + a1∙qn−1
证明 Sn = [a1(1-qn)] / (1-q)

证明
①、第一步:当n = 1时,左边S1 = a1 ,右边= a1(1-q1) / (1-q)=a1,所以,当n = 1时成立

②、第二步:假设n = m公式成立,即

Sm = a1 + a1∙q + a1∙q2 + … + a1∙q m−1 = a1 (1-qm)/(1-q) (等式1)

③、当n = m + 1时,根据以上假设,有

Sm+1 = a1 + a1∙q + a1∙q2 + … + a1∙q m−1 + a1∙q m = a1(1-qm)/(1-q) + a1 ∙ qm (等式2)

④、注意:此步不能将n=m+1直接代入等式1或待证明的等式,得到

Sm+1 = a1 (1-qm+1)/(1-q) ,

这样做是错误的。必须使用等式2的形式推导出 Sm+1 = a1 (1-qm+1)/(1-q) ,若推导出该等式,则结论成立,否则结论不成立。

⑤、等式2的右侧

a1(1-qm)/(1-q) + a1∙qm
=a1(1-qm)/(1-q) + a1∙qm(1-q)/(1-q)
=(a1-a1 qm+a1 qm-a1 qm+1)/(1-q)
=a1(1-qm+1)/(1-q)

因此 Sm+1= a1(1-qm+1)/(1-q) ,即,由假设的n = m公式成立,成功的推导出n = m+1也成立,于是得出结论,对于任意自然数n,等比数列公式成立。

7、数学归纳法的变体

1)、从1以外的其他数开始时的变体
此时应对证明步骤修改如下:
第一步:证明当n = b (b≥2)时命题成立
第二步:假设n = m (m ≥ b)时成立,据此推导出n = m +1时也成立。

2)、针对奇数的数学归纳法
此时应对证明步骤作如下修改:
第一步:证时当n = 1时命题成立
第二步:假设n = m时成立,据此推导出n = m +2时也成立。

3)、针对偶数的数学归纳法
此时应对证明步骤作如下修改:
第一步:证时当n = 0或2时命题成立
第二步:假设n = m时成立,据此推导出n = m +2时也成立。

4)、另外,还有递归归纳法、跳跃归纳法、第一数学归纳法,第二数学归纳法(完整归纳法),倒推归纳法,螺旋归纳法等归纳法,在此就不详述了。


1.3 数理逻辑


一、数理逻辑基础

1、数理逻辑历史简介

  • 1)、19世纪中叶以后发展起来的现代形式逻辑,通常称为数理逻辑,也称为符号逻辑。
  • 2)、1847年,英国数学家布尔发表了《逻辑的数学分析》,建立了“布尔代数”,并创造一套符号系统,利用符号来表示逻辑中的各种概念。布尔建立了一系列的运算法则,利用代数的方法研究逻辑问题,初步奠定了数理逻辑的基础。
  • 3)、1879年,德国数学家弗雷格在发表的《概念演算》(又名《概念文字》)一书中,建立了第一个一阶逻辑体系。
  • 4)、19世纪70年代,G.康托尔创立了集合论。集合论,特别是第一个一阶逻辑体系的建立,是形式逻辑的发展进入现代阶段的标志
  • 5)、1884年,德国数学家弗雷格出版了《算术基础》一书,在书中引入量词的符号,使得数理逻辑的符号系统更加完备。
  • 6)、对建立这门学科做出贡献的,还有美国人皮尔斯,他也在著作中引入了逻辑符号。从而使现代数理逻辑最基本的理论基础逐步形成,成为一门独立的学科。
  • 7)、数理逻辑在我国的历史
    20世纪30至40年代,苏联曾把形式逻辑当作形而上学来批判,并把辩证法当作惟一科学的逻辑。讲辩证法一定要批判形式逻辑。在此影响下,当时中国也有人“宣判”了形式逻辑的“死刑”。不过在1949年前这种全盘否定形式逻辑的思潮在中国还不属主流思想。1949年到1950年间这种思潮也成为中国的主流思想。1961年代才开始突破苏联50至60年代逻辑教材的某些框框,清除了苏联教材散布的种种常识性错误。

2、数理逻辑的概念及其思想

1)、概念

数理逻辑是用数学的方法研究推理规律的学科,又称为符号逻辑、理论逻辑。所谓的数学方法就是指引进一套符号体系的方法。数理逻辑是基础数学的一个不可缺少的组成部分。虽然名称中有逻辑两字,但并不属于单纯逻辑学范畴。

2)、数理逻辑属于形式逻辑”形式上“符号化、数学化的逻辑,也就是说,数理逻辑进一步把形式逻辑的形式,比如“如果…那么…”,“那么…那么…”等起“形式”作用的联接词也符号化、数学化。

3)、思想

莱布尼茨曾设想能不能创造一种“通用的科学语言”,可以把推理过程像数学一样利用公式来进行计算,从而得出正确的结论。他认为经典的传统逻辑必须改造和发展,使之更为精确和便于演算。

3、数理逻辑大致可分为5个方面:逻辑演算(包括命题演算和谓词演算)、模型论、证明论、递归论和公理集合论。

4、命题演算简介

1)、命题演算是研究关于命题如何通过一些逻辑连接词构成更复杂的命题以及逻辑推理的方法。
2)、命题(类似于形式逻辑中的判断)是指具有具体意义的又能判断它是真还是假的句子。
3)、步骤

  • 把命题看作运算的对象,如同代数中的数字、字母或代数式一样,比如,把命题“今天是星期一”使用P来表示,

  • 把逻辑连接词看作运算符号,就像代数中的“加、减、乘、除”那样,比如,把连接词“如果…那么…”使用运算符号“→”来表示。

  • 那么由简单命题组成复合命题的过程,就可以当作逻辑运算的过程,也就是命题的演算。这样的逻辑运算也同代数运算一样具有一定的性质,满足一定的运算规律。例如满足交换律、结合律、分配律,同时也满足逻辑上的同一律、吸收律、双否定律、狄摩根定律、三段论定律等等。利用这些定律,可以进行逻辑推理,可以简化复合命题,可以推证两个复合命题是不是等价等等。命题演算的一个具体模型就是逻辑代数。逻辑代数也叫做开关代数,它的基本运算是逻辑加、逻辑乘和逻辑非,也就是命题演算中的“或”、“与”、“非”,运算对象只有两个数 0和 1,相当于命题演算中的“真”和“假”。

  • 比如

    “如果今天是星期一,那么我就去游泳”,

    若把”今天是星期一“使用P表示,把”我就去游泳“使用Q表示,把联接词“如果…那么…”使用"→"表示,则以上语句可表示为

    P → Q,

    是由两个简单命题P和Q联接而成的。

5、公理集合论简介

1)、公理集合论是用公理化方法重建(朴素)集合论的研究以及集合论的元数学和集合论的新的公理的研究。公理集合论试图把集合论公理化,用公理对集合加以限制,以克服悖论。常用的公理系统是策梅洛(Zermelo)和弗兰克尔(Fraenkel)等提出的ZF公理系统
2)、公理集合论产生的原因及历史

  • 在集合论的研究过程中,由于发现了集合论的罗素悖论引起了数学史上的第三次危机。

  • 1903年,英国哲学家、逻辑学家、数学家罗素对集合论提出了“罗素悖论”,这个悖论的提出几乎动摇了整个数学基础。

  • 罗素悖论中一个很通俗也很有名的例子就是“理发师悖论”,如下:

    某乡村有一位理发师,有一天他宣布:只给不自己刮胡子的人刮胡子。
    那么就产生了一个问题:
    理发师究竟给不给自己刮胡子?如果他给自己刮胡子,他就是给自己刮胡子的人,按照他的原则,他又不该给自己刮胡子;如果他不给自己刮胡子,那么他就是不给自己刮胡子的人,按照他的原则,他又应该给自己刮胡子。这就产生了矛盾。

3)、悖论的提出促使许多数学家去研究集合论的无矛盾性问题,从而产生了数理逻辑的一个重要分支——公理集合论。

6、递归论简介

递归论主要研究可计算性的理论,它和计算机的发展和应用有密切的关系。

7、模型论简介

处理在不同的模型中什么为真的数理逻辑分支叫做模型论。模型论主要是研究形式系统和数学模型之间的关系。

8、证明论简介

  • 1)、研究在特定形式系统中什么为可以形式证明的分支叫做证明论

  • 2)、非欧几何的产生和集合论的悖论的发现,说明数学本身还存在许多问题,为了研究数学系统的无矛盾性问题,需要以数学理论体系的概念、命题、证明等作为研究对象,研究数学系统的逻辑结构和证明的规律,这样又产生了数理逻辑的另一个分支——证明论。

  • 3)、历史

    ①、希尔伯特方案的提出

    证明论是数学家D.希尔伯特于20世纪初期建立的,目的是要证明公理系统的无矛盾性,希尔伯特提出一整套严格的方案,大意规定是:

    • 建立一组公理体系,使一切数学命题原则上都可由此经有限步推定真伪,
    • 还要求公理体系保持“独立性”和“无矛盾性”(即,不能从公理系统导出矛盾)

    他打算先给出公理化的算术系统的无矛盾性,再证明数学分析,集合论的无矛盾性。

    ②、希尔伯特方案被完全否定

    但1931年,K.哥德尔证明了:

    一个包含公理化的算术的系统中不能证明它自身的无矛盾性。
    注:可简单理解为”不能自已证明自已“

    这就是著名的哥德尔不完备性定理。这个结果使希尔伯特方案成为不可能。

    ③、对希尔伯特方案的改进

    1936年,G.根岑降低了希尔伯特的要求,允许使用无穷长的证明,证明了算术公理系统的无矛盾性。

    ④、证明论的近代发展

    20世纪60年代以后,证明论不再局限于无矛盾性的证明。数学证明中的结构,证明的复杂性,数学中不可判定问题都成为证明论的研究课题,1977年,J.帕里斯发现算术理论中的一个自然的而又是不可判定的命题,这是一个重大发现。它使算术中自然的不可判定命题的研究越来越受人注意

  • 4)、哥德尔不完备性定理简介

    • 第一定理
      任意一个包含一阶谓词逻辑与初等数论的形式系统,都存在一个命题,它在这个系统中既不能被证明为真,也不能被证明为否。
    • 第二定理
      如果系统S含有初等数论,当S无矛盾时,它的无矛盾性不可能在S内证明。
  • 5)、理解哥德尔不完备性定理

    • 哥德尔不完备性定理并不意味着任何有意义的公理系统都是不完备的。
    • 该定理需假设公理系统可以“定义”自然数。
    • 不过并非所有系统都能定义自然数,就算这些系统拥有包括自然数作为子集的模型。例如,欧几里得几何可以被一阶公理化为一个完备的系统(事实上,欧几里得的原创公理集已经非常接近于完备的系统。所缺少的公理是非常直观的,以至于直到出现了形式化证明之后才注意到需要它们)
    • 塔尔斯基(Tarski)证明了实数和复数理论都是完备的一阶公理化系统。
  • 6)、哥德尔不完备性定理的意义及影响

    • 该理论使”数学基础“研究发生了划时代的变化,更是现代逻辑史上很重要的一座里程碑。该定理与塔尔斯基的形式语言的真理论,图灵机和判定问题,被赞誉为现代逻辑科学在哲学方面的三大成果。
    • 哥德尔是20世纪最伟大的数学家和逻辑学家。在逻辑学中的地位,一般都将他与亚里士多德和莱布尼兹相比;在数学中的地位,爱因斯坦把哥德尔的贡献与他本人对物理学的贡献相提并论。
二、ZF公理系统简介

第一个常用的公理系统是策梅洛(Zermelo)和弗兰克尔(Fraenkel)等提出的ZF公理系统(即,由下文的公理1~8组成)。如果加上选择公理(即下文的公理9)就构成ZFC公理系统。
一定要注意:ZF公理系统中,集合的元素都是集合,自然数可用 皮亚诺公理系统表示,如3={0,1,2}={{},{{}},{{},{{}}}}。

1、(ZF1)外延公理(容积公理):

  • 1)、形式语言形式:

    ∀P ∀Q [ ∀ X (X∈P↔X∈Q)→P=Q]

  • 2)、自然语言描述:
    对任意集合P和任意集合Q,如果对任意元素X,X属于P当且仅当X属于Q(即,P和Q的元素完全一致),那么P等于Q。

  • 3)、释义:
    拥有完全相同元素的两个集合是等同的

  • 4)、说明:
    该公理告诉我们,怎样的集合是相等的,即,只要元素相同,集合就相等,换言之,“一个集合完全被它的元素(外延)决定 ”

2、(ZF2)空集合存在公理(空集公理)

  • 1)、形式语言形式为:

    ∃ A, ∀ x :¬ (x ∈ A)

  • 2)、自然语言描述:

    存在一个集合A,使得没有集合是它的元素。

  • 3)、说明 :存在一集合x,它没有任何元素。

3、(ZF3)无序对公理(配对公理):

  • 1)、形式语言:

    ∀x ∀y ∃z ∀w (w∈z ↔ w=x ⋁ w=y)

  • 2)、自然语言:
    给定任何集合x和任何集合y,存在一个集合z使得,给定任何集合w,如果w∈z,当且仅当w=x或w=y。

  • 3)、理解公理
    分析这种形式语言的关键在于∃符号,该运算符的自然语言意思是“存在”,但出现在形式语言中,通常表示该符号之后的对象是待求解的对象或需满足一定条件的对象。
    因此,∃z表示“存在集合z”,意味着z是待求解的集合或待构造的集合。
    因此,可将以上公理理解为“构造集合z”。也就是说,该公理实际说的是,给定两个集合x和y,可以找到(存在)一个集合z,它的元素恰是x和y,即z={x,y}。可将以下语句理解为构造集合z的元素的方法

    任意集合w∈z,当且仅当w=x或w=y
    即,若w是z的元素,当且仅当w = x或w = y,可知,z的元素有两个x和y。

  • 4)、说明

    • 可以使用外延公理证实集合z是唯一的。
    • 通过配对公理得到的集合z可以称作无序对,记为{x, y},即z = {x, y},根据外延公理有 {x,y} = {y,x},可见,该集合是无序的。
    • 该公理告诉我们,可由二个集合生成第三个集合,生成的第三个集合无次序,且是唯一的,所以叫无序(配)对公理。
    • 在ZF公理化集合论中,配对公理可以从幂集公理和替换公理模式中得出,所以它有时被省略。
    • 配对公理还允许定义有序对。因为有时候有序对会更有用

4、(ZF4)并集公理:

  • 1)、形式语言:

    ∀X ∃Y ∀a(a∈Y ↔ ∃b ( b∈X ⋀ a∈b) })

  • 2)、自然语言:
    对任意集合X,存在集合Y,使a∈Y当且仅当存在b使b∈X且a∈b,后面一句其实就是在说,Y的元素a是X的元素的元素,它被称为X的并集,并记为⋃ X

  • 3)、理解公理
    可将以上公理理解为“构造集合Y”,其中b∈X表示b是X的元素,a∈b表示a是b的元素,而a是Y的元素,所以Y的元素是X的元素的元素所组成的。

  • 4)、说明

    • 根据外延公理这个集合Y是唯一的
    • 该公理告诉我们,一个集合的并集可以生成一个新的集合,或者说,由任意集合X的元素的元素可以生成一个新的集合。或者说,对于任何集合X,存在一个集合Y,它的元素完全是X的元素的元素。
  • 5)、等价形式
    对于所有集合 T 都对应着一个集合 ∪T,T 的并集,精确的包含 T 的元素中的所有元素作为元素

5、(ZF5)幂集公理(子集之集公理):

  • 1)、形式语言:

    ∀X ∃Y ∀A(A∈Y↔ A⊆ X )

  • 2)、自然语言:
    任给一个集合X,存在集合Y,对于任意的A,如果A∈Y(即,A是Y的元素),当且仅当A是X的子集,也就是说,Y的元素是由X的子集的全体组成

  • 3)、理解公理
    同理,仍可将以上公理理解为“构造集合Y”,Y的元素由X的子集的全体组成,或者说,X的任一子集都是Y的元素

  • 4)、说明

    • 通外延公理可知,集合Y是唯一的
    • 称集合Y为X的幂集
    • 该公理告诉我们:所有集合都有一个幂集,或者说,存在以已知集合的一切子集为元素的集合。或者说,任意集合X的子集的全体可以生成一个新的集合
  • 5)、等价形式
    对于所有集合T都对应着一个集合 T1,T 的幂集,精确的包含 T 的所有子集作为元素。

6、(ZF6)无穷公理(无限集公理)

  • 1)、形式语言:

    ∃Y ( ∅∈Y ⋀ ∀X(X∈Y → X⋃{X} ∈ Y ) )

  • 2)、自然语言:
    “存在一个集合Y,使得空集是其元素,且对其任意元素X,如果X是Y的元素,则X∪{X}也是其元素”。其中,X⋃{X} 表示X的后继

  • 3)、理解公理
    同理,仍可将以上公理理解为“构造集合Y”,集合Y有时也叫做归纳集合,归纳集合带有性质:对于所有X ∈ Y,X的后继也是Y的一个元素。
    要理解无穷公理,需理解以下概念
    ①、单元素集合
    单元素集合是由唯一 一个元素组成的集合。如,{0},{1}等,注意:{{1,2,3,4}}也是单元素集合,只是其中的唯一的元素是一个集合。
    ②、后继
    X⋃{X} 表示X的后继,以自然数为例,0是空集,0={},而1是0的后继,即

    1 = 0⋃{0} = {}⋃{0} ={0}
    同理
    2= 1⋃{1} = {0}⋃{1} ={0,1}
    3 = 2⋃{2} = {0,1}⋃{2} ={0,1,2}
    如此类推,可见对于任何自然数n等同于由它的所有前驱组成的集合。

    可见,无穷公理是通过类似于数学归纳法的方法完成的:首先假定有一个集合Y包含零,并接着规定对于Y的所有元素,这个元素的后继也在Y中。

  • 4)、说明

    • 通过外延公理可知集合Y是唯一的。
    • 该公理断言:存在无穷集合,或者说,存在一集合,它有无穷多元素。
    • 该公理也可表述为:存在归纳集
    • 现代集合论中还有一些强无穷性公理,也叫大基数公理,它们断言有各种大基数存在,现已提出的大基数已达数十种。
  • 5)、等价形式
    在域中存在至少一个集合 Z 包含空集作为一个元素,并且对于它的每个元素 a 都对应着形如 {a} 的进一步元素而构成的,换句话说,对于它的每个元素 a 它也包含对应的集合 {a} 作为元素”。

7、(ZF7)替换公理(置换公理,映像存在原理):

  • 1)、形式语言:

    ∀u∀v∀w(φ(u, v) ⋀ φ(u, w) → v=w) → ∀X∃Y∀v(v∈Y↔(∃u∈X)⋀φ(u, v))

  • 2)、自然语言:对于任意的u、v、w,如果公式φ(u, v) 和φ(u, w)都为真,那么 v=w,于是,任给集合 X ,存在集合Y,其元素是X中的元素u能使公式φ(u, v)为真的那些v所组成。

  • 3)、理解公理

    • 同理,仍可将以上公理理解为“构造集合Y”。
    • φ(x, y)是一个公式,表示对于任意的集合x最多存在一个集合y来满足φ(x, y)所给出的对应要求,比如,假设φ(x, y) 为 x−y+1 = 0,假设集合x={1,2,3},则集合y={2,3,4}。
    • 可以把公式φ(x, y)理解为一个关于x的映射或函数f(x),或者说,任意集合x与公式φ(x, y)确定了一个函数f(x)。于是x类似于函数的定义域,而y则类似于值域。
    • 因此,该公理的前半部分只是给出了v=w的情形,后半部分才是在构造集合Y,可见,集合Y的元素是由X中的元素u满足公式φ(u, v)的那些v所组成的。比如,假设公式φ(u, v)为u−v+1 = 0,假设集合X={1,2,3},u是X中的一个元素,可见,集合v={2,3,4},于是Y={2,3,4}。
    • 若把φ(x, y)理解为关于x的函数,则可把该公理理解为,对于任意的集合X,可以找到任意的一个函数以此集合为定义域,然后可以得到一个集合Y是此函数的值域。
  • 4)、说明

    • 由于公式φ(x, y)有无穷多个,每个具体的公式都确定一条公理,因此,该公理实质上是一个公理模式,它包含了无穷多条公理。
    • 该公理告诉我们:任意集合X,可以找到任意一个函数F以X为定义域,然后,可以通过X和F生成一个新的集合Y= F(X)。或者说,集合在单值映射下的像仍是集合。
  • 5)、替换公理的等价形式

    • 对任意集合x和任意对x的元素有定义的逻辑公式F(z),存在集合y,使w∈y当且仅当存在z∈x而且F(z)=w
    • 对于任意的函数F(x),对于任意的集合T,当x属于T时,F(x)都有定义成立的前提下(ZF中唯一的对象是集合,所以F(x)必然是集合),就一定存在一集合Y,使得对于所有的x属于T,在集合Y中都有一元素v,使v=F(x)。也就是说,由F(x)所定义的函数的定义域在T中的时候,那么它的值域可限定在Y中。

8、(ZF8)正则公理(基础公理)

  • 1)、形式语言:

    ∀X [ ∃a(a∈X) → ∃Y (Y∈X ⋀ ∀b(b∈Y → b∉X) ) ]

    ∀X[X ≠ ∅ → ∃Y(Y∈X ⋀ X⋂Y=∅)]

  • 2)、自然语言:

    • 对任意非空集合X,至少有一 Y∈X 使X∩Y为空集。
    • 对任意非空集合X,X中至少有一元素Y使X∩Y为空集
    • 任意非空集合 X 中至少有一个元素Y与X自身的交集为空集。
    • 任何一个集合都有一个元素,使得这个元素与自身的交集为空
  • 3)、正则公理告诉我们以下结论

    • 不存在以自身为元素的集合,或者说,任何集合都不包含他自己
    • 没有无限序列an使得对于所有i,ai+1是ai的元素,即,总有一个元素没有前趋,或者说,不存在无限递降的集合序列,于是可得到如下结论
      • 所有集合都是良基集。说明任何非空集合都有∈关系的最小元,或者说,一个集合的元素都具有最小性质
      • 不存在∈关系的无穷串
  • 4)、正则公理与罗素悖论

    • 正则公理的主要作用是排除悖论的出现。
    • 正则公理并没有真正解决罗素悖论,或者说,并没有否定罗素悖论,正则公理只是限制了数学所讨论的集合的范围,从而避开了罗素悖论。这是能找到的最好的解决办法:通过正则公理排除所有已知的矛盾。

9、(AC)选择公理(策梅洛公理)

  • 1)、要明白该公理,需明白以下两个概念

    • (1)、集族(集合族):是指由非空集合组成的集合,即集合的集合,如集合A = {1,2},B={4,5,6},则M = {A, B}是一个集族。注意,由空集φ作为元素的集合是一个集族,它已不是空集,即A={φ},它不同于{ },在这里,A= {φ}是具有一个元素的集合,是单元素集。
    • (2)、选择函数:选择函数是集族上的函数,规定:对于所有在集族X中的集合S,f(S)是S的一个元素。可将选择函数简单理解为:选择函数f能在集族X的集合S中选择一个元素出来。
  • 2)、形式语言:

    ∀X[ ∅ ∉ X ⟹ ∃f : X → ⋃X ∀S∈X( f(S)∈ S)]

  • 3)、自然语言:
    对于所有的集族X,且∅ ∈ X,则存在X到⋃X的映射f,满足任给S ∈ X,都有f(S)∈ S,即f(S)是S的一个元素。忽略一些限制条件,如∅ ∉ X等,仅理解其核心内容就是:对于所有的集族,都存在选择函数

  • 4)、理解选择公理
    仍然可将选择公理理解为“构造一个新集合”,选择公理说简单点就是,存在一个选择函数可以从集合的每个元素(仍为集合)中选择一个元素(即元素中的元素)出来,并且可以由这些元素生成一个新的集合,比如A={1,2},B={3,4,5},C = {7,8},X={A,B,C},选择函数的意思是,可以从X中的集合A、B、C中分别选取出一个元素出来,具体怎么选,选哪一个元素,选择公理没有说明。选择公理的关键是“存在选择函数”,只要存在选择函数,就能由此生成新的集合。

  • 5)、怎样使用选择公理

    • 需要注意的是,选择公理并未说明选择函数应以怎样的方式选择元素,仅说明了存在这么一个函数可以从集族的集合中选择出一个元素出来。选择公理在直觉上是很明显和理所当然的事情,以至于可以认为没什么用就像说了句废话一样,但选择公理并非这样简单的。下面就来讲讲选择公理的作用

    • 问题的引出(无穷的存在)
      假设需要从无穷多个集合的每个集合中各选择一个元素组成一个新的集合,如果使用逐个挑选的办法,就需要等到无穷多步后才能断言这个集合的存在,这种方法显然行不通。

    • 示例
      有无限堆西瓜,每堆西瓜有无限个。那么,是否可以在每堆中选取一个西瓜,再把它们放在新的一堆内呢?
      这看来应该能做到,因为每一堆都有西瓜,当然可以在每一堆中选择一个西瓜出来,不论每堆的西瓜数目是多少,和堆数是多少,“应该”能做到,但问题是,在这堆西瓜中,究竟选择那一个呢?可否“随便选一个便可?”,但什么是“随便”呢?这个“随便”的方法是否必然存在呢(选择函数并未说明选取的方法,所以,是否存在一种可以选取的方法是一个问号)?另外,西瓜的堆数是无穷的,需要无穷的选择下去,需要选择到什么程度才能算选择结束了呢?

    • 寻找性质P
      如果能找到一个性质P,并且在无穷多个集合的每个集合中都有一个元素具有性质P,那就可以断言元素集的存在,这样就避开了无穷多次的具体选择。

      著名哲学家兼数学家罗素(Bertrand Russell)曾经举了一个例子:
      “设有无穷多双鞋,想要建立一个集合,使它恰好含有每双鞋中的一只,这是不必进行无穷多次选择的。因为鞋分左右脚,只要取全部的左脚鞋就可以了。”
      这个“左脚鞋”就是性质P。

    • 现实情况
      关键是在很多场合是找不到这种性质P的。比如说是散乱的无穷多双袜子,袜子不分左右,找不到性质P把他们区分开,使用性质P的方法就行不通了。

    • 选择公理的作用
      选择公理可以从无穷多个没有相同性质元素的集合中选择出一个元素出来,因为选择公理说明了存在这么一个函数能选择出来,直接应用选择公理就避开了无穷问题,直接就选择出来了,只是,选择公理没说明怎样选择,因此使用选择公理就可以从无穷多双袜子中选出一只组成一个集合。

      罗素曾说过:
      “由无限双袜子中,每双选择一只出来的话,我们需要‘选择公理’,但如果换成是鞋的话,那便不必了。因为鞋是可以分左右的,袜子则两只没什么分别,不知如何选择。另外,如果只有有限双袜子,在逻辑上是可以不用’选择公理’的。”

      因此,若集合的个数是有限的或虽然有无穷多个集合但其中的元素具有某性质,则不需使用选择公理。若集合个数是无限的,并且没有性质可言,则需要选择公理。

  • 6)、争议

    • 选择公理是一条十分争议性的命题,并且这个争论仍然未结束,要在数学上证明或否证选择公理并非易事,无论是接受还是放弃选择公理都会出现一些不合常理(荒唐)的情况。一般的数学家都接受这条公理,因为可以从其中得出很多有用的结果。

    • 接受选择公理的不合常理的情况
      巴拿赫─塔斯基悖论(Banach-Tarski Paradox),又称为分球问题、分球定理、分球悖论、分球怪论。这个悖论指出在选择公理成立的情况下可以将一个实心球分成有限部分后,再重新组合成两个半径和原来相同的完整的球。大致过程如下:

      在选择公理成立的情况下,把一个单位球体(半径为1)分成有限个点集(不勒贝格可测的),最少可分成五份,然后仅仅通过旋转和平移到其他地方重新组合,不过要旋转(不可列)无穷次,在组合后,可以组成两个半径和原来相同的完整的球。这在现实中是不可能的。
      巴拿赫和塔斯基提出这一定理原意是想拒绝选择公理,但该证明很自然,因此数学家认为这仅意味着选择公理可以导致少数令人惊讶和反直觉的结果。

    • 放弃选择公理,也会出现一些很不合常理的情况,有兴趣的读者可以参阅其他资料,这里就从略了。

    • 大量的事例说明选择公理是现代数学的一个基本原则和基本方法,许多学科的基本定理少不了选择公理,比如,

      • 泛函分析中的哈恩—巴拿赫定理(关于巴拿赫空间上的线性泛函的可扩张性);
      • 拓扑学的吉洪诺夫定理(关于任意多紧空间的直积为紧);
      • 布尔代数的斯通表示定理,每个布尔代数皆同构于集代数;
      • 自由群论的尼尔森定理,自由群的子群也是自由的。
        但是,选择公理是否合理和正确一直存在着争议。
    • 总结:至少在目前,选择公理是不需要证明的,直接暴力拿来使用即可。

  • 7)、选择公理的等价形式

    选择公理有很多等价的形式(有好几十种),下面列举几个

    ①、与本文类似的形式

    • 对于所有的集族X,都存在选择函数f,使得对于所有在X中的集合S,f(S)是S的一个元素。
    • 对任意集c存在以c为定义域的选择函数g,使得对c的每个非空元集x,g(x)∈x。
    • 对于一个集族X = {Si},i ∈ I (其中I是指标集,可以为有限,可数或不可数)其成员Si均不为空集,那么存在一个集合A= {xi},使得xi ∈ Si,∀i。
      若该形式引入一个选择函数后
      f: X → ⋃ {Si}
      Si → f(Si)
      后半句就成为了:∃f,使得∀i∈ I,f(Si)=Si (在这种情况下A = {f(Si )} )。此时,就与本文的形式类似了。

    ②、存在选择函数的描述形式

    • 设X是一个集族,则存在着X上定义的一个选择函数f
    • 任何非空集合的集合族上都存在选择函数。
    • 对于任何集合A,A的幂集(减去空集)有一个选择函数。

    ③、生成的新集合与集合族中的集合有唯一公共元素的描述形式

    • 如果 T 是集合的集合,T的元素都不为空集且相互无交,则它的并集 T 至少包含一个子集 S1 ,T 中的每个元素与S1有且只有一个公共元素 。
    • 给定由相互不交的非空集合组成的任何集合,存在着至少一个集合,它与每个非空集合恰好有一个公共元素。
    • 对任何由非空集合组成的集族X,存在一个集合Y,使对任意的S∈ X,S和Y恰有一个公共元素。
    • 对于任意两两不交的集合族,存在集合C,使对所给的族中的每个集合X,集合X与C的交恰好只含一个元素。

    ④、集族上的任意笛卡尔积总是非空的

10、分离公理模式

分离公理模式由于可以由替换公理模式和空集公理证明,有时已经不将之作为公理看待。在有分离公理模式的ZF公理系统中,空集公理是多余的。

11、下面使用简短易懂的语言对ZF公理系统作一总结

1)、(ZF1)外延公理:
拥有完全相同元素的两个集合是等同的

2):(ZF2)空集公理
存在一集合x,它没有任何元素(即,存在空集)。

3)、(ZF3)配对公理:
可由二个集合生成第三个集合,生成的第三个集合无次序,且是唯一的

4)、(ZF4)并集公理:
一个集合的并集可以生成一个新的集合,或者说,由任意集合X的元素的元素可以生成一个新的集合。

5)、(ZF5)幂集公理:
所有集合都有一个幂集,或者说,存在以已知集合的一切子集为元素的集合。或者说,任意集合X的子集的全体可以生成一个新的集合

6)、(ZF6)无穷公理:存在无穷集合

7)、(ZF7)替换公理:
任意集合X,可以找到任意一个函数F以X为定义域,然后,可以通过X和F生成一个新的集合Y= F(X)。或者说,集合在单值映射下的像仍是集合。

8)、(ZF8)正则公理:
不存在以自身为元素的集合,或者说,任何集合都不包含他自己

9)、(AC)选择公理:
忽略一些限制条件(如不能为空集等),仅理解其核心内容就是:
对于所有的集族,都存在选择函数,或者说,存在一个选择函数可以从集合的每个元素(仍为集合)中选择一个元素(即元素中的元素)出来,并且可以由这些元素生成一个新的集合,


1.4 欧氏几何与非欧几何简介


一、公理化方法

1、公理:

在证明几何命题时,每一个命题总是从再前一个命题推导出来的,而前一个命题又是从再前一个命题推导出来的,但是,不能这样无限地推导下去,应有一些命题作为起点,这些作为论证起点,具有自明性并被公认下来的命题称为公理。

2、公理化方法
在一个数学理论系统中,应尽可能少地先选取原始概念和不加证明的若干公理,以此为出发点,利用纯逻辑推理的方法,把该系统建立成一个演绎系统,这样的方法就是公理化方法。

3、欧几里德就是使用的公理化方法。他以公理、公设、定义为要素,作为已知,先证明了第一个命题,然后又以此为基础,来证明第二个命题,如此下去,证明了大量的命题。在数学发展史上,欧几里德被认为是成功而系统地应用公理化方法的第一人,被公认为是最早用公理法建立起演绎的数学体系的典范。公理化方法已经几乎渗透于数学的每一个领域,对数学的发展产生了不可估量的影响,公理化结构已成为现代数学的主要特征。

二、欧几里得几何(欧氏几何)简介

1、欧几里得几何指按照古希腊数学家欧几里得的《几何原本》构造的几何学。欧几里得几何有时单指平面上的几何,即平面几何

2、欧氏几何的五条几何公理如下:

①、过相异两点,能作且只能作一直线(直线公理)。
②、任意线段能无限延长成一条直线。
③、给定任意线段,可以以其一个端点作为圆心,该线段作为半径作一个圆(圆公理)。
④、所有直角都相等(角公理)。
⑤、若两条直线都与第三条直线相交,并且在同一侧的内角之和小于两个直角和,则这两条直线在这一侧必定相交。

说明:

  • 1)、第五条公理称为平行公理、平行公设、欧几里得第五公设,可以导出下述命题:

    通过一个不在直线上的点,有且仅有一条不与该直线相交的直线。

    这个公设还能衍生出“三角形内角和等于一百八十度”的定理。

  • 2)、欧式几何通过有限的公理来证明所有的真命题。

  • 3)、欧氏几何除5个几何公理外,还有5个一般公理,23个定义等内容,从略。

3、关于平行公理的问题

  • 1)、平行公设是欧几里得几何一条与众不同的公理,叙述比前四条复杂,并不像其他公理那么显然,数学家们并不怀疑这个命题的真实性,而是认为它无论在语句的长度,还是在内容上都不大像是个公设,而倒像是个可以证明的定理,只是由于欧几里得没能找到它的证明,才不得不把它放在公设之列。
  • 2)、为了给出第五公设的证明,完成欧几里得没能完成的工作,自公元前3世纪起到19世纪初,数学家们投入了无穷无尽的精力,他们几乎尝试了各种可能的方法,但都遭到了失败。
  • 3)、在高斯(F. Gauss)时代,公设五备受质疑,俄罗斯数学家罗巴切夫斯基、匈牙利人波尔约阐明第五公设只是公理系统的一种可能选择,并非必然的几何真理,也就是“三角形内角和不一定等于一百八十度”,从而发现非欧几里得的几何学,即“非欧几何”(non-Euclidean geometry)。19世纪,通过构造非欧几里得几何,说明平行公理是不可证的。

4、几何原本存在的缺陷

  • 1)、《几何原本》用现代的标准来衡量,在逻辑的严谨性上还存在着不少缺点。如

    • ①、一个公理系统都有若干原始概念(或称不定义概念),如点、线、面就属于这一类。欧几里德对这些都做了定义,但定义本身含混不清。
    • ②、其公理系统不完备,许多证明不得不借助于直观来完成。
    • ③、个别公理不是独立的,即可以由其他公理推出。
  • 2)、这些缺陷直到1899年德国数学家希尔伯特的《几何基础》出版时才对以上缺陷进行了完善。在这部名著中,希尔伯特成功地建立了欧几里德几何的完整、严谨的公理体系,即所谓的希尔伯特公理体系。这一体系的建立使欧氏几何成为一个逻辑结构非常完善而严谨的几何体系。也标志着欧氏几何完善工作的终结。

  • 3)、若从欧几里得公理体系中去掉平行公理,则可以得到更一般的几何,即绝对几何。绝对几何是指满足希尔伯特的《几何基础》中的接合公理、顺序公理、合同公理和连续公理等四组公理的几何,

    • 接合公理对点、直线、平面之间的结合关系作了规定,共有4条规则,下面列举一条作为示例,比如,至少存在四个点,不在同一个平面上。
    • 顺序公理描述了点的顺序关系(共8条规则)
      比如在一条直线上的任意三点中,至多有一点在另两点之间。
    • 合同公理用于确定线段或角的合同关系,(共5条规则),
      如设 AB 与 BC 为直线 a 上无公共内点的两个线段,又设A’B’与B’C’为同一直线 a 或另一直线a’上无公共内点的两个线段,如果AB≡A’B’且BC≡B’C’,则必有AC≡A’C’。
    • 连续公理是希尔伯特公理系统中确定直线的连续性,并建立线段和角的度量理论的一组公理,共有以下两条。
      • 阿基米德公理(Archimedean axiom)
        若 AB 及 CD 为任意二线段,则在沿 A 到 B 的射线上可以取有限个点A1, A2, … , An,使线段AA1, A1A2,…, An-1An都合同于(可理解为等于)线段 CD ,且点 B 在点 A 与An之间;
      • 直线完备公理(axiom of linear completeness)
        一直线上所有满足结合公理、顺序公理、合同公理和阿基米德公理的点的集合不可能扩充成仍然满足这些公理的更大的集合。直线完备公理保证了直线上的一切点可以和实数一 一对应起来。
三、非欧几里得几何(非欧几何)简介

1、非欧几何是指不同于欧几里得几何学的几何体系,通常是指罗巴切夫斯基几何(又称为罗氏几何、双曲几何,1830年)和黎曼几何(又称为椭圆几何,1854年)。

2、非欧几何与欧氏几何最主要的区别在于公理体系中采用了不同的平行公理。

欧氏几何认为:过直线外一点有且只有一条直线与已知直线平行。
罗氏几何认为:过直线外一点至少存在两条直线和已知直线平行。
黎曼几何认为:同一平面上的任何两直线一定相交。

可见,欧氏几何与非欧几何的根本区别在于“平行公理”。

3、罗氏几何简介

  • 1)、罗氏几何除了平行公理之外,其他公理基本与欧氏几何相同。

  • 2)、由于平行公理不同,由此演绎出了一系列全无矛盾的和欧氏几何内容不同的新的结论。比如,

    • 可以得出三角形的内角和小于两直角。
    • 罗氏几何同一直线的垂线和斜线不一定相交。
  • 3)、罗氏几何除了平行公理之外采用了欧氏几何的一切公理。因此,凡是不涉及到平行公理的几何命题,在欧式几何中如果是正确的,在罗氏几何中也同样是正确的。在欧式几何中,凡涉及到平行公理的命题,在罗氏几何中都不成立,他们都相应地含有新的意义。

4、黎曼几何简介

  • 1)、黎曼几何除了平行公理之外,对欧氏几何的其他公理做了部分改动。
  • 2)、该几何演绎出了如下结论:
    • 三角形的内角和大于两直角
    • 黎曼几何不承认平行线的存在(因为任何直线总是会相交的)
    • 直线可以无限延长,但总的长度是有限的。
      黎曼几何的模型是一个经过适当“改进”的球面。所以,黎曼几何也称为椭圆几何。
  • 3)、黎曼几何的应用
    近代黎曼几何在广义相对论里得到了重要的应用。在广义相对论中的空间几何就是黎曼几何。黎曼几何不仅是微分几何的基础,也应用在微分方程、变分法和复变函数论等方面。

5、非欧几何的争议以及最终的接受

  • 1)、从上面所列举的罗氏几何的一些命题可以看到,这些命题和我们所习惯的直观有矛盾。所以罗氏几何中的一些几何事实没有象欧氏几何那样容易被接受。注:先有罗氏几何,之后才有的黎曼几何
  • 2)、1826年2月23日,罗巴切夫斯基于喀山大学物理数学系学术会议上,宣读了他的第一篇关于非欧几何的论文:《几何学原理及平行线定理严格证明的摘要》。这篇论文的问世,标志着非欧几何的诞生。然而,这一重大成果刚一公诸于世,就遭到正统数学家的冷漠和反对。
  • 3)、直到1868年,意大利数学家贝尔特拉米在他出版的著名论文《非欧几何解释的尝试》中,证明了非欧几何可以在欧几里得空间的曲面(例如拟球曲面)上实现,也就是说,非欧几何命题可以“翻译”成相应的欧几里得几何命题,如果欧几里得几何没有矛盾,非欧几何也就自然没有矛盾。
  • 4)、1871年,德国数学家克莱因认识到从射影几何中可以推导度量几何,并建立了非欧几何模型。这样,非欧几何的相容性问题就归结为欧氏几何的相容性问题,由此非欧几何得到了普遍的承认。

6、非欧几何的意义

随着非欧几何的产生,引起了数学家们对几何基础的研究,从而从根本上改变了人们的几何观念,扩大了几何学的研究对象,使几何学的研究对象由图形的性质进入到抽象空间,即更一般的空间形式,使几何的发展进入了一个以抽象为特征的崭新阶段。可以说,非欧几何的产生是数学以直观为基础的时代进入以理性为基础的时代的重要标志。

7、产生罗氏几何的思维过程

  • 1)、不能反抗就换个思路,学会接受
    罗巴切夫斯基是从1815年着手研究平行线理论的。开始他也是循着前人的思路,可是,很快他便意识到自己的证明是错误的。前人和自己的失败从反面启迪了他,使他大胆思索问题的相反提法:可能根本就不存在第五公设的证明。于是,他便调转思路,着手寻求第五公设不可证的解答。

  • 2)、反证法的应用
    罗巴切夫斯基创造性地运用了处理复杂数学问题常用的一种逻辑方法——反证法。这种反证法的基本思想是,

    • 为证“第五公设不可证”,首先对第五公设加以否定,然后用这个否定命题和其它公理公设组成新的公理系统,并由此展开逻辑推演。
    • 首先假设第五公设是可证的,即第五公设可由其它公理公设推演出来。那么,在新公理系统的推演过程中一定会出现逻辑矛盾,至少第五公设和它的否定命题就是一对逻辑矛盾;反之,如果在“第五公设不可证”的新公理系统的推演中不出矛盾,就反驳了“第五公设可证”这一假设,从而也就间接证得“第五公设不可证”。
    • 说简单一点就是,使用一个第五公设的否定在新公理系统中进行推演,若出现矛盾,则就说明第五公设是可证的,若未出现矛盾,则可得出结论“第五公设不可证”
  • 3)、创建自已的公理系统
    依照这个逻辑思路,罗巴切夫斯基对第五公设的等价命题——普列菲尔公理,即

    “过平面上直线外一点,只能引一条直线与已知直线不相交”

    作以否定,得到否定命题

    “过平面上直线外一点,至少可引两条直线与已知直线不相交”

    并用这个否定命题和其它公理公设组成新的公理系统展开逻辑推演。

  • 4)、演绎推理与大胆得出结论
    在推演过程中,他得到一连串古怪、非常不合乎常理的命题。但是,经过仔细审查,却没有发现它们之间存在任何逻辑矛盾。于是,远见卓识的罗巴切夫斯基大胆断言,

    这个“在结果中并不存在任何矛盾”的新公理系统可构成一种新的几何,它的逻辑完整性和严密性可以和欧几里得几何相媲美。

    而这个无矛盾的新几何的存在,

    就是对第五公设可证性的反驳, 也就是对第五公设不可证性的逻辑证明。

    由于在当时尚未找到新几何在现实界的原型和类比物,罗巴切夫斯基慎重地把这个新几何称之为“想象几何”。

  • 5)、发表成果以及遭遇冷落

    1826年2月23日,罗巴切夫斯基于喀山大学物理数学系学术会议上,宣读了他的第一篇关于非欧几何的论文:《几何学原理及平行线定理严格证明的摘要》。这篇论文的问世,标志着非欧几何的诞生。然而,这一重大成果刚一公诸于世,就遭到正统数学家的冷漠和反对。


1.5 辩证逻辑


一、辩证逻辑基础

1、辩证逻辑产生在形式逻辑之后,19世纪初黑格尔第一次建立了一个唯心主义的辩证逻辑的体系,马克思主义哲学产生后,才有了科学的辩证逻辑。

2、辩证逻辑以思维的辩证运动和发展,即辩证思维作为自己的研究对象。即,辩证逻辑研究的是辩证思维。

  • 1)、辩证思维的特点是把客观世界的各种事物和现象,看作是普遍联系和永恒变化着的,并把世界的发展变化看成是自身所固有的各种矛盾发展变化的结果。
  • 2)、可见辩证思维的两个基本核心思想是:
    • 认为对象是永远都在变化发展着的,不是静止的,要求观察问题和分析问题时,以动态发展的眼光来看问题。
    • 认为对象内部是存在矛盾的,这个矛盾是一直在变化的(有短暂的达到动态同一的情形),矛盾变化的结果导致事物的变化。认为矛盾无处不在,无时不有,矛盾存在于一切事物发展的过程中,每一事物发展过程都存在着自始至终的矛盾运动。“运动本身就是矛盾”。世界上的一切事物都是包含矛盾的,因而对任何事物都是可以分析也是应该分析的,所谓分析就是分析事物的矛盾。

3、辩证思维与其他思维的关系

  • 1)、形而上学思维是以孤立、静止、片面的观点看待世界,否定或排斥客观事物的运动、变化和发展及其内部原因的思维。与辩证思维相对立。注意:形而上学思维与形式逻辑思维是有区别的,不能把两者等同起来。

  • 2)、形式逻辑思维与辩证思维

    • 形式逻辑思维撇开对象的内在矛盾及运动发展,主要从形式结构上研究思维的形式和规律,把思维形式看作既成的、确定的,主要反映对象间最普通、最简单的关系。形式逻辑推理的每一个环节都是完全确定的,界限分明的,它用逻辑符号来指称对象,有一套严密的逻辑规则,能够进行精确的逻辑演算。形式逻辑思维大体属于抽象思维,是人们思维发展过程中的必经环节和阶段,故有其存在的必要性与合理性,形式逻辑思维虽然有其局限性,但与辩证思维并不互相排斥和绝对对立。人的形式逻辑思维大体可以分为:初步的逻辑思维,经验型逻辑思维,理论型逻辑思维。
    • 辩证逻辑并不纯粹研究思维的形式结构,而是从形式与内容的有机结合上,从表现在思维形式之中的认识内容、结合人类的认识过程来考察思维形式的联系、运动、发展和转化的规律。所以,辩证逻辑是以流动范畴建立起来的科学体系,是抽象和概括人类认识的发展、变化的连续方面,反映客观对象间的辩证联系,是以概念展开的方式实现其逻辑进程的。辩证逻辑并不代替和贬低形式逻辑在科学认识中的地位和作用,人们在辩证思维过程中,同样需要遵循形式逻辑的规则;
  • 3)、辩证思维是指以变化发展视角认识事物的思维方式,通常被认为是与形而上学相对立的一种思维方式。这种思维既不同于形而上学思维方式,也有别于传统逻辑思维(即,形式逻辑思维)。在传统逻辑思维中,事物一般是“非此即彼”、“非真即假”,而在辩证思维中,事物可以在同一时间里“亦此亦彼”、“亦真亦假”而无碍思维活动的正常进行。

  • 4)、人类思维的发展,一般是由形象思维到抽象思维,再由抽象思维到辩证思维。可见,辩证思维是最高形式的思维运动。辩证思维方法以抽象思维方法作为反映客观现实的认识论基础。所以,如果没有抽象思维,辩证思维根本就无法进行,而且辩证思维同样也要遵从抽象思维的规则,并使思维概念在辩证运动中与客观现实相符,以便能够达到预期的目的和结果。

4、辩证逻辑的基本内容包括以下4项(即,基本规律、形式、方法、逻辑范畴)

  • 1)、基本规律。
    包括以下三个规律,这三个规律是辩证思维的基本规律
    • 对立统一规律(即矛盾规律)
    • 质量互变规律
    • 否定之否定规律
  • 2)、形式。与形式逻辑相同,包括概念、判断、推理
  • 3)、方法。包括以下四种具体的方法。
    • 从抽象上升到具体
    • 归纳与演绎的统一
    • 分析与综合的统一
    • 逻辑的与历史的统一
      4)、逻辑范畴等。

5、辩证逻辑4个方法简介

  • ①、从抽象上升到具体。

    • 抽象和具体是辩证思维的高级形式。
    • 抽象是对客观事物某一方面本质的概括或规定,它作为逻辑的起点表现在思维行程中
    • 具体是指思维对事物各方面的本质规定的完整的反映。思维具体或理性具体是在抽象的基础上形成的综合,它不同于感性具体,感性具体只是感官直接感觉到的具体,而理性具体则是在感性具体基础上经过思维的分析和综合,达到对事物多方面属性或本质的把握。思维中的具体(即,理性具体),在思维进程中表现为结果或逻辑的终点。
    • 使用该方法的步骤如下:
      要求人们客观地分析、研究对象各个方面的本质规定及其内在联系,以便在概念或范畴的相互联结上,从起点经过中介到达终点,形成一个反映客观必然联系的逻辑体系。说简单一点就是由抽象的逻辑起点经过一系列中介,达到理性具体的过程。
    • 特点
      这种方法反映了科学的认识从具体(感性具体)到抽象、再从抽象上升到具体(理性具体)的发展过程。它不仅要求把具体事实作为科学抽象的依据和前提,而且要求从抽象上升到具体,使对客观事物抽象的规定在思维进程中导致具体的再现。
    • 简单的理解抽象与具体
      可从物理实验和物理理论的规则来理解抽象和具体,比如,原子模型的建立,最先根据一些并不完善信息(感性具体),建立起一个理论上的原子模型(抽象),再通过物理实验对该模型进行验证,并根据实验对该模型进行修改以达到与现实世界相符合,从而形成一套完整的正确的理论(理性具体)。然后再根据这套理论去推导和发现一些物理现象,这一个过程是相互作用不断循环的。
  • ②、归纳与演绎的统一

    • 归纳是从个别性的或特殊性的前提推出一般性结论的方法。
    • 演绎是从一般性的前提推出个别性的或特殊性结论的方法。
    • 归纳和演绎的客观基础是事物本身固有的个性和共性、特殊和普遍的关系。归纳和演绎是方向相反的两种思维方法。辩证逻辑从人的认识是在实践基础上由个别到一般、又由一般到个别的完整的认识过程出发,把归纳和演绎看作是相互联系、相互渗透和相互转化的辩证统一的方法。这种方法要求人们从一般和个别、普遍和特殊的相互联结上把握事物的内部矛盾,分析事物的矛盾运动。
  • ③、分析与综合的统一,

    • 分析是思维把事物分解为各个部分加以考察的方法。
    • 综合是把事物的各个部分联结成一个整体加以考察的方法。
    • 分析和综合的客观基础是事物整体与部分、系统与要素之间的关系。分析和综合是两种相反的思维方法。辩证逻辑把分析与综合看作是同一方法的不可分割的环节,两者相互依存、相互渗透和相互转化。每一具体概念的形成,既要分析对象的各个方面,又要综合地把握对象的整体。在辩证思维过程中,从提出问题到解决问题,每一步都是分析与综合方法的结合运用,一切论断都是经过分析和综合的结果。
  • ④、逻辑的与历史的统一。

    • 逻辑指的是理性思维或抽象思维,它以理论的形态反映客观事物的规律性。
    • 历史包括两层意思:一是指客观现实的历史发展过程,二是指人类认识的历史发展过程。
    • 由抽象上升到具体的逻辑思维过程同客观事物的历史过程和认识的历史过程应当符合,也就是逻辑和历史的统一。真正科学的认识是现实历史发展的反映,要求思维的逻辑与历史的进程相一致。历史是逻辑的基础和内容,逻辑是历史在理论上的再现,是“修正过”的历史。逻辑和历史的一致是辩证思维的一个根本原则。

6、基本规律与形式的关系

  • 1)、辩证逻辑的基本规律贯穿于辩证思维过程的始终,表现为概念、判断、推理的矛盾运动。即,需在概念、判断、推理三个阶段都进行矛盾运动的分析。
  • 2)、概念的联系、转化达到具体的同一,就是辩证逻辑的基本规律在概念中的体现;即,辩证逻辑在概念阶段的推理需要达到“具体同一”的标准。
  • 3)、具体概念的展开,就是判断的肯定和否定的矛盾运动;
  • 4)、判断从肯定到否定,再从否定到肯定,以至最后得出结论的统一运动过程,就是判断展开为推理和论证的运动。即,辩证逻辑在判断阶段的推理需要达到“结论的统一运动”

7、推理应达到什么程度

在思维中所进行的概念、判断、推理的推演和变化等一系列矛盾运动,达到主观和客观的统一,最终是由实践来证明的。

8、检验结论真实性的方法----实践

  • 1)、形式逻辑是精确、严密的推理形式,辩证逻辑在确定推理结论的真实性时,则要求用实践去检验。在辩证逻辑中,逻辑证明和实践证明是相统一的,
  • 2)、因此,辩证逻辑的基本规律不仅要求辩证思维的逻辑进程必须以客观现实的矛盾运动为前提和出发点,而且要求辩证思维过程的每一步都用实践来检验。实践是逻辑思维的基础,也是检验思维正确与否的标准。逻辑思维本身随着实践的发展而发展。辩证思维遵循着逻辑的基本规律而展开,在反映客观现实矛盾的基础上不断前进。

9、辩证逻辑的形式简介

  • 1)、辩证逻辑对概念、判断、推理等逻辑思维基本形式的理解,与其他研究思维形式的学科不同。

  • 2)、概念

    • 概念是辩证思维的最基本形式,辩证思维的其他形式实际上都是概念的展开和推演。也就是说,判断和推理是概念的展开和推演。
    • 辩证逻辑把对概念的辩证本性的研究作为前提和基本任务,它研究概念的形成、发展及其内在的矛盾运动。
    • 概念在反映客观现实时,具有一个从抽象向具体发展的过程,它不会只停留在抽象的阶段上。否则,它就不可能把握客观事物的整体,再现事物多样性的统一。只有在概念从抽象上升到具体,真正反映了事物的本质及其内在的必然联系时,才会达到主观与客观、普遍与特殊的辩证统一,从而形成具体概念。具体概念不是思维的外在形式,而是思维的本质内容和矛盾运动的形式。
  • 3)、判断

    • 从抽象概念到具体概念及概念之间逻辑联系的过程,是概念展开为判断、推理的运动。
    • 原先蕴涵在概念中的矛盾,在判断中以进一步展开的形式显露出来。辩证逻辑正确区分了思维中的逻辑矛盾和客观现实中存在的辩证矛盾,认为判断必须反映客观现实中的辩证矛盾,把判断看作是反映这种矛盾的必要的思维形式。辩证逻辑不把各种不同的判断形式平列起来,而是从判断的发展和相互转化中揭示它们之间的隶属关系。判断的隶属关系表现着它们的运动,表现着它们以认识深化过程为基础的相互推导,从而明确每一判断形式的认识意义。判断形式的分类及其相互隶属关系反映认识的历史发展。判断形式由单一性判断到特殊性判断和普遍性判断的运动,是思维为了认识事物客观过程的规律性的一种运动形式,从而也是科学认识的一般规律。
  • 4)、推理

    辩证逻辑不是从静态上,而是从认识内容的变化、发展的实际过程为依据去研究推理。它并不否定在人类思维的发展中形成的并为形式逻辑所概括的精确、严密的推理形式,但它同时认为,归纳与演绎在人类思维过程中是辩证统一的。思维借助于这些推理形式,从已知到未知,获得关于事物的具体真理性的知识。

10、矛盾分析法(使用矛盾规律的方法)

  • 1)、广义的矛盾分析法,实际上就是对立统一规律的应用,体现着辩证认识的实质。狭义的矛盾分析法则是矛盾发展不平衡性原理的应用,其通俗表述称为“两点论”分析法。
  • 2)、“两点论”就是要同时看到主次矛盾、矛盾的主次方面以及主次之间的辩证关系。因此,要反对“形而上学的一点论”。
  • 3)、“重点论”就是在看到主次矛盾和矛盾的主次方面的同时,必须分清主次,抓住主要矛盾和矛盾的主要方面,因为事物的性质主要是由主要矛盾的主要方面决定的,不能将主次等量齐观,更不能颠倒主次。因此,要反对“折中主义的均衡论”。

11、通过以上讲解,可知辩证逻辑的主要特点是:
辩证逻辑把推理过程看作分析矛盾和觖决矛盾的过程,辩证逻辑把对象看作一个整体,从内在矛盾的运动、变化及其各个方面的相互联结中考察对象。

12、在使用辩证逻辑分析问题时,与形式逻辑的步骤大约相同,即,形成概念(即通过认识事物形成概念),进行判断,再推理,不过,在每一步都应进行矛盾分析(使用辩证逻辑中的4个方法、两点论及3个基本规律分析),具体过程和步骤就不详解了。

二、对立统一规律(矛盾规律)简介

1、对立统一规律揭示了,无论在什么领域,任何事物以及事物内部以及事物之间都包含着矛盾

2、对立统一规律的基本内涵可大致概括为,

  • 1)、矛盾的同一性(统一性)与斗争性;
  • 2)、矛盾的普遍性与特殊性;
  • 3)、矛盾的不平衡性,即主要矛盾与次要矛盾,矛盾的主要方面与次要方面。

4、同一性(统一性)与斗争性;

  • 1)、矛盾的同一性(类似于相互吸引),

    矛盾的同一性是矛盾双方相互依存、相互肯定的属性,它使事物保持自身统一。由于对立面之间相互统一的作用,双方能够互相吸取和利用有利于自己的因素而得到发展,从而为扬弃对立为解决矛盾准备条件。

  • 2)、矛盾的斗争性(类似于相互排斥),

    矛盾的斗争性是矛盾双方相互排斥、相互否定的属性,它使事物不断地变化以至最终破坏自身统一。对立面之间的相互斗争是促成新事物否定旧事物的决定力量(这句话说明了,斗争性能产生新事物否定旧事物)。

  • 3)、解析:可把以下斗争与同一的关系理解为处于不断战争中的两国之间的关系(即,不可分割和相互制约),两国总是存在着斗争,但同时也存在着和平(类似于同一),和平和斗争并不总是有明确的界限,斗争中含有和平,斗争最终会导致和平,和平通常只是暂时的相对稳定的和平,和平是在一定条件下的和平,一旦和平被破坏又会产生斗争。

  • 4)、斗争的绝对性和统一的相对性

    • 对立面的斗争是绝对的,正如发展、运动是绝对的一样。
    • 对立面的统一是有条件的、暂时的、易逝的、相对的
  • 5)、斗争绝对性的解释

    对立面斗争的绝对性是指它的普遍性、无条件性。对立面的斗争性是矛盾运动中活跃的、能动的方面,它能够打破各种条件的限制,并能创造矛盾发展所必需的新条件。有矛盾就有斗争,矛盾斗争的存在不受任何条件限制,对立面相互排斥的趋势在任何条件下都要贯彻下去。斗争不仅贯穿于每一个具体矛盾运动的始终,而且存在于新旧矛盾交替的过程中,是促使旧矛盾让位于新矛盾的根本力量。

  • 6)、统一相对性的解释

    对立面统一的相对性是指它的条件性。对立面的统一性是矛盾运动中相对稳定的、保守的方面。对立面的统一由建立、巩固到分解是一个过程,这是一个条件变化的过程。任何具体的条件都不是固定不变的。对立面的斗争必然地要打破旧的条件和创造新的条件,也就必然地要破坏旧的统一和建立新的统一。斗争是不间断的、绝对的,它不断地破坏旧的统一和建立新的统一,使统一成为间断的、相对的。反之,只有统一的间断性、相对性才能体现斗争的不间断性、绝对性。绝对的斗争性体现着事物发展过程中的绝对的变动性,相对的统一性体现着事物发展过程中的相对稳定性。任何事物的发展过程都是绝对变动性和相对稳定性的统一。

  • 7)、毛泽东说:“有条件的相对的统一性和无条件的绝对的斗争性相结合构成了一切事物的矛盾运动”

  • 8)、同一性和斗争性的关系

    • (1)、同一性和斗争性是矛盾运动过程中两种不可分割的基本关系
      对立面的相互斗争并不是在双方之间划出一条绝对分明的和固定不变的界限,也就是说,二者之间的界限并不是绝对分明的。因为,在对立面的相互斗争中,就有相互依存、相互渗透(即,斗争中存在同一);相互斗争的结果,可以使双方相互转化、相互过渡(斗争导致相互转化)。同样,统一也总是以差别和对立为前提的,没有离开斗争的统一。在对立面的相互统一中,就有相互对立、相互排斥;作为斗争的结果而发生的对立面的相互转化,最鲜明地表现着对立面之间的内在统一(这话的意思是,斗争最终会达到统一)。
    • (2)、同一性和斗争性是相互制约的
      • 斗争制约统一,使统一只能存在于一定的条件下和一定的限度内。
      • 对立面的相互斗争创造着双方相互依存的形式,又在它自己所创造的形式内为破坏这种形式而创造条件。
      • 因为统一受斗争制约,统一又制约着斗争,具体的统一性规定着斗争的具体性质、具体形式和界限等。
      • 对立面的相互统一使矛盾统一体保持相对稳定的状态,也就使双方的斗争具有确定的内容和形式,并使斗争的成果得以巩固。

5、矛盾的普遍性与特殊性

  • 1)、矛盾的普遍性是指矛盾存在于一切事物的发展过程中,每一事物的发展过程中都存在着自始至终的矛盾运动,即所谓矛盾无处不在,无时不有。“运动本身就是矛盾”。世界上的一切事物都是包含矛盾的,因而对任何事物都是可以分析也是应该分析的,所谓分析就是分析事物的矛盾。科学都是研究事物矛盾的,科学每前进一步都是以揭露和认识新矛盾为内容的。
  • 2)、矛盾的特殊性是指具体事物在其运动中的矛盾及每一矛盾的各个方面都有其特点。有三种情形:一是不同事物的矛盾各有其特点;二是同一事物的矛盾在不同发展过程和发展阶段各有不同特点;三是构成事物的诸多矛盾以及每一矛盾的不同方面各有不同的性质、地位和作用。

6、矛盾的多样性

  • 1)、种类的多样性:在现实生活中,比较复杂的事物都是由诸多矛盾构成的系统,都包含着自身特殊的矛盾,从而与其他事物区别开来
  • 2)、解决形式的多样性:由于矛盾的性质、地位以及条件的复杂性,矛盾解决的形式也是多种多样的,主要有:矛盾一方克服另一方;矛盾双方同归于尽;矛盾双方形成协同运动的新形式;矛盾双方融合成一个新事物。

7、矛盾的分类

  • 在矛盾群中又存在着根本矛盾和非根本矛盾、主要矛盾和次要矛盾。
  • 根本矛盾贯穿事物发展过程的始终,规定着事物的性质。
  • 主要矛盾在矛盾体系中处于支配地位,对事物发展起主导和决定作用。主要矛盾解决的好,次要矛盾就可以比较顺利地得到解决;
  • 非根本矛盾、次要矛盾是处于服从地位的矛盾。次要矛盾解决的如何,会直接影响主要矛盾的解决。
  • 在每一对矛盾中又有矛盾的主要方面与矛盾的次要方面,矛盾的性质主要是由矛盾的主要方面决定的。

8、矛盾的不平衡性

  • 1)、矛盾的不平衡性,包含主要矛盾与次要矛盾、矛盾的主要方面与次要方面等两大原理
  • 2)、事物都是由矛盾群构成的,事物矛盾群中的多个矛盾以及矛盾的各个方面在事物发展中的地位和作用是不同的,有主要矛盾和非主要矛盾、矛盾的主要方面和非主要方面。这种矛盾力量的不平衡性,是矛盾特殊性的重要表现。因此,矛盾发展不平衡性的原理是矛盾特殊性的重要表现。这就是矛盾发展不平衡性的原理。
  • 3)、主要矛盾和次要矛盾的地位不是一成不变的,在一定条件下它们可以相互转化,即主要矛盾转化为次要矛盾,次要矛盾上升为主要矛盾。

9、矛盾分析法(使用矛盾规律的方法)

  • 1)、广义的矛盾分析法,实际上就是对立统一规律的应用,体现着辩证认识的实质。狭义的矛盾分析法则是矛盾发展不平衡性原理的应用,其通俗表述称为“两点论”分析法。
  • 2)、“两点论”就是要同时看到主次矛盾、矛盾的主次方面以及主次之间的辩证关系。因此,要反对“形而上学的一点论”。
  • 3)、“重点论”就是在看到主次矛盾和矛盾的主次方面的同时,必须分清主次,抓住主要矛盾和矛盾的主要方面,因为事物的性质主要是由主要矛盾的主要方面决定的,不能将主次等量齐观,更不能颠倒主次。因此,要反对“折中主义的均衡论”。

作者:黄邦勇帅(原名:黄勇)
2022-02-06

在这里插入图片描述


评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值