数理逻辑小结1——命题逻辑基本概念

本文介绍了命题逻辑的基本概念,包括命题、联结词、命题公式、指派、逻辑蕴含、逻辑等价、范式(合取范式、析取范式及主范式)、联结词的扩充与归约,以及对偶式和主合取/析取项的性质。通过实例展示了命题符号化、逻辑操作和公式简化的方法。
摘要由CSDN通过智能技术生成

数理逻辑(1)——命题逻辑基本概念

一 命题与联结词

命题符号化

  • 命题:可以判断真假的陈述句
  • 原子命题:不包含任何逻辑联结词的命题 or 无法分解为更简单陈述句的命题
  • 复合命题:由联结词和简单命题构成的命题

联结词

  • 命题变元:若字母 P P P 未指定代表某一命题,其为命题变元,否则其为命题常元,拥有唯一真值
  • 命题联结词:
    • ¬ \neg ¬:非
    • ∧ \wedge :与,常见于“既。。又。。”、“不仅。。而且。。”、“虽然。。但是。。”、“。。和。。”
    • ∨ \vee :或,注意或与异或的区别
    • → \to :蕴含, P → Q P\to Q PQ 可以表示 ”如果P,那么Q“、”只要P,就Q“,”P仅当Q“,“除非Q,否则非P”
    • ↔ \leftrightarrow :当且仅当
    • 优先级: ¬   >   ( ∧ = ∨ )   >   →   >   ↔ \neg\,>\,(\wedge=\vee)\,>\,\to\,>\,\leftrightarrow ¬>(=)>>

命题公式以及指派

  • 命题公式:由原子命题(命题常元,命题变元)以及命题联结词经过有限次复合的结果为命题公式。若公式 A A A 含有原子变元符 p 1 , p 2 , ⋯   , p n p_1,p_2,\cdots,p_n p1,p2,,pn,则记为 A ( p 1 , p 2 , ⋯   , p n ) A(p_1,p_2,\cdots,p_n) A(p1,p2,,pn)
  • 指派:对公式 A A A 中的所有原子变元进行赋值,若有 n n n 个原子变元,则有 2 n 2^n 2n 种赋值方式
  • 重言式:公式对任意一种赋值永真
  • 永假式(矛盾式):公式对任意一种赋值永假
  • 可满足式:存在一个指派使得公式为真
  • 命题赋值的计算:
    • ¬ A = 1 − A \neg A=1-A ¬A=1A
    • A ∧ B = A ∗ B A\wedge B=A*B AB=AB
    • A ∨ B = A + B − A B A\vee B=A+B-AB AB=A+BAB
    • A → B = 1 − A + A B A\to B=1-A+AB AB=1A+AB
    • A ↔ B = A B + ( 1 − A ) ( 1 − B ) A\leftrightarrow B=AB+(1-A)(1-B) AB=AB+(1A)(1B)

逻辑蕴含与逻辑等价

  • 逻辑蕴含:对公式 A A A B B B,如果所有弄真 A A A 的指派必弄真 B B B,则称 A A A 逻辑蕴含 B B B,记为 A ⇒ B A\Rightarrow B AB
  • 逻辑蕴含:若所有弄真公式集 Γ = { A 1 , A 2 , ⋯   , A n } \Gamma=\{A_1,A_2,\cdots,A_n\} Γ={A1,A2,,An} 中的每个公式的指派,都弄真 B B B,则称 Γ ⇒ B \Gamma\Rightarrow B ΓB
  • 逻辑等价: A ⇒ B A\Rightarrow B AB B ⇒ A B\Rightarrow A BA,记为 A ⇔ B A\Leftrightarrow B AB
  • 逻辑蕴含与逻辑等价的证明:可以根据命题赋值的计算形式或者真值表来进行判断

定理

  • A ⇒ B A\Rightarrow B AB 当且仅当 A → B A\to B AB 为重言式
  • A ⇔ B A\Leftrightarrow B AB 当且仅当 A ↔ B A\leftrightarrow B AB 为重言式
  • 代入原理:设 A A A 为含命题变元 p p p 的重言式,将 A A A 中所有 p p p 的出现均替换为命题公式 B B B,所得公式仍为重言式
  • 替换原理: C C C 为公式 A A A 中子公式, C ⇔ D C\Leftrightarrow D CD,若将 A A A 中某些公式 C C C 替换为 D D D,得到公式 B B B,有 A ⇔ B A\Leftrightarrow B AB

二 范式

基本概念

  • 文字:原子命题变元及其否定称为文字

  • 合取式:若干文字的合取称为合取式

  • 析取式:若干文字的析取称为析取式

  • 合取范式:若干析取式的合取,形如
    A 1 ∧ A 2 ∧ ⋯ ∧ A n A_1\wedge A_2\wedge \cdots \wedge A_n A1A2An
    其中 A i A_i Ai 为析取式

  • 析取范式:若干合取式的析取,形如
    A 1 ∨ A 2 ∨ ⋯ ∨ A n A_1\vee A_2\vee\cdots\vee A_n A1A2An
    其中 A i A_i Ai 为合取式

范式的求解

  • 范式定理:任一命题公式 A A A 都存在与之等价的合取范式和析取范式,合取范式与析取范式的形式不唯一
  • 范式的求解过程:
    1. 消去 → \to ↔ \leftrightarrow
      • A → B ⇔ ¬ A ∨ B A\to B\Leftrightarrow\neg A\vee B AB¬AB
      • ( A ↔ B ) ⇔ ( A ∧ B ) ∨ ( ¬ A ∧ ¬ B ) (A\leftrightarrow B)\Leftrightarrow(A\wedge B)\vee(\neg A\wedge\neg B) (AB)(AB)(¬A¬B)
      • ( A ↔ B ) ⇔ ( ¬ A ∧ B ) ∨ ( A ∧ ¬ B ) (A\leftrightarrow B)\Leftrightarrow(\neg A\wedge B)\vee(A\wedge\neg B) (AB)(¬AB)(A¬B)
    2. 使用摩根定律消除 ¬ \neg ¬
      • ¬ ( A ∧ B ) ⇔ ¬ A ∨ ¬ B \neg(A\wedge B)\Leftrightarrow\neg A\vee \neg B ¬(AB)¬A¬B
      • ¬ ( A ∨ B ) ⇔ ¬ A ∧ ¬ B \neg(A\vee B)\Leftrightarrow\neg A\wedge\neg B ¬(AB)¬A¬B
    3. 使用分配律进行转换
    4. 化简冗余子公式

主范式

相互等价的公式有着相同的主范式,可以根据主范式作为所有相互等价的公式的统一形式。(我认为根本上是使用公式来表达一个完备的真值表)

注意下列表述中,合取范式、主合取范式、合取项、合取式的区别,析取亦然。

  • 合取项:称合取范式中的析取式为合取项

  • 析取项:称析取范式中的合取式为析取项

  • 主合取范式:若命题公式 A A A 的某一个合取范式,其中每一个合取项都唯一包含有公式 A A A 中的任意一个单位变元,则称该合取范式为主合取范式,称其中的合取项为极大项,常用 M j M_j Mj 表示
    A ⇔ M 1 ∧ M 2 ∧ ⋯ ∧ M k M j = Q 1 ∨ Q 2 ∨ ⋯ ∨ Q n Q i = p i o r ¬ p i A\Leftrightarrow M_1\wedge M_2\wedge\cdots\wedge M_k\\ M_j=Q_1\vee Q_2\vee\cdots\vee Q_n\\ Q_i=p_i\quad or\quad \neg p_i AM1M2MkMj=Q1Q2QnQi=pior¬pi

  • 主析取范式亦然

  • 主范式的求解:

    1. 得到相应的合取范式或析取范式
    2. 向合取项中添加若干永假式 $p_i\wedge\neg p_i
      $,其中 p i p_i pi 为该合取式中缺少的命题变元或向析取项中添加若干永真式 p i ∨ ¬ p i p_i\vee\neg p_i pi¬pi
    3. 使用分配律进行展开化简

定理

  • 永真式无主合取范式,永假式无主析取范式
  • 任一命题公式(非永真永假)都存在唯一与之等价的主合取范式和主析取范式
  • n n n 元命题公式 A A A 的主合取范式中极大项与极小项的数目之和为 2 n 2^n 2n
  • n n n 元命题公式的全体可以划分为 2 2 n 2^{2^n} 22n 个等价类,每一类中的公式相互逻辑等价,并等价于他们公共的主合取范式

主范式以及其极大极小项的较多性质可以根据其形式简单推出,且已经在数字逻辑课程中学习过,此处略去。

三 联结词的扩充与归约

一个 n n n 元联结词就是一个从 { T , F } n → { T , F } \{T,F\}^n\to\{T,F\} {T,F}n{T,F} n n n 元映射,其对应的真值函数表有 2 2 n 2^{2^n} 22n 种,下面就对我们上边所学的 5 中联结词之外的联结词进行扩充。

一元联结词

p p p f 1 ( p ) f_1(p) f1(p) f 2 ( p ) f_2(p) f2(p) f 3 ( p ) f_3(p) f3(p) f 4 ( p ) f_4(p) f4(p)
00011
10101

相应的真值函数为

  • f 1 ( p ) = 0 f_1(p)=0 f1(p)=0:常联结词
  • f 2 ( p ) = p f_2(p)=p f2(p)=p:恒等联结词
  • f 3 ( p ) = ¬ p f_3(p)=\neg p f3(p)=¬p:否定词
  • f 4 ( p ) = 1 f_4(p)=1 f4(p)=1:常联结词

二元联结词

p p p q q q ∗ 1 *_1 1 ∗ 2 *_2 2 ∗ 3 *_3 3 ∗ 4 *_4 4 ∗ 5 *_5 5 ∗ 6 *_6 6 ∗ 7 *_7 7 ∗ 8 *_8 8
0000000000
0100001111
1000110011
1101010101
p p p q q q ∗ 9 *_9 9 ∗ 10 *_{10} 10 ∗ 11 *_{11} 11 ∗ 12 *_{12} 12 ∗ 13 *_{13} 13 ∗ 14 *_{14} 14 ∗ 15 *_{15} 15 ∗ 16 *_{16} 16
0011111111
0100001111
1000110011
1101010101
  • p ∗ 1 q ⇔ 0 , p ∗ 16 q ⇔ 1 p*_1q\Leftrightarrow0,p*_{16}q\Leftrightarrow1 p1q0,p16q1 ∗ 1 , ∗ 16 *_1,*_{16} 1,16 为常联结词
  • p ∗ 4 q ⇔ p , p ∗ 6 q ⇔ q p*_4q\Leftrightarrow p,p*_6q\Leftrightarrow q p4qp,p6qq 为投影联结词
  • p ∗ 13 q ⇔ ¬ p , p ∗ 11 q ⇔ ¬ q p*_{13}q\Leftrightarrow\neg p,p*_{11}q\Leftrightarrow\neg q p13q¬p,p11q¬q 为二元否定词
  • p ∗ 9 q ⇔ ¬ ( p ∨ q ) p*_9q\Leftrightarrow\neg(p\vee q) p9q¬(pq) 为或非词,用记号 ↓ \downarrow 表示,即 p ↓ q ⇔ ¬ ( p ∨ q ) p\downarrow q\Leftrightarrow\neg(p\vee q) pq¬(pq)
  • p ∗ 15 q ⇔ ¬ ( p ∧ q ) p*_{15}q\Leftrightarrow\neg(p\wedge q) p15q¬(pq) 为与非词,用记号 ↑ \uparrow 表示,即 p ↑ q ⇔ ¬ ( p ∧ q ) p\uparrow q\Leftrightarrow\neg(p\wedge q) pq¬(pq)
  • p ∗ 3 q ⇔ ¬ ( p → q ) , p ∗ 5 q ⇔ ¬ ( q → p ) p*_3q\Leftrightarrow \neg(p\to q),p*_5q\Leftrightarrow\neg(q\to p) p3q¬(pq),p5q¬(qp),即 ∗ 3 , ∗ 5 *_3,*_5 3,5 为蕴含否定词,可以表示为 p ∗ 3 q = p ↛ q ⇔ ¬ ( p → q ) , p ∗ 5 q = q ⊤̸ ⇔ ¬ ( q → p ) p*_3q=p\not\to q\Leftrightarrow\neg(p\to q),p*_5q=q\not\top\Leftrightarrow\neg(q\to p) p3q=pq¬(pq),p5q=q¬(qp)
  • p ∗ 7 q ⇔ ( p ∨ q ) ∧ ¬ ( p ∧ q ) ⇔ ¬ ( p ↔ q ) p*_7q\Leftrightarrow(p\vee q)\wedge\neg(p\wedge q)\Leftrightarrow\neg(p\leftrightarrow q) p7q(pq)¬(pq)¬(pq),称为异或词,用 ∨ − \vee^- ⊕ \oplus 表示
  • 剩余为常用的五个蕴含词

联结词的表示与完备词组

  • 联结词的可表示性:设 h h h 为一 n n n 元联结词, A A A 为由 m m m 个联结词 g 1 , g 2 , ⋯   , g m g_1,g_2,\cdots,g_m g1,g2,,gm 构成的命题公式,若有 h ( p 1 , p 2 , ⋯   , p n ) ⇔ A h(p_1,p_2,\cdots,p_n)\Leftrightarrow A h(p1,p2,,pn)A,则称联结词 h h h 可由联结词 g 1 , g 2 , ⋯   , g m g_1,g_2,\cdots,g_m g1,g2,,gm 来表示
  • 联结词的完备性:设 C C C 为联结词的集合,若对任一命题公式都可由 C C C 中的联结词表示出来的公式与之等值,则称 C C C 是联结词的完备集,或称 C C C 是完备的联结词集合
  • 任何一个一元、二元联结词都可以通过 ¬ , ∨ , ∧ \neg,\vee,\wedge ¬,, 表示出来
  • 当联结词组可表示所有的一元、二元联结词时,称其为完备联结词组
  • 联结词完备集有 { ¬ , ∧ , ∨ } ,   { ¬ , ∨ } ,   { ¬ , ∧ } ,   { ¬ , → } ,   { ↑ } ,   { ↓ } \{\neg,\wedge,\vee\},\,\{\neg,\vee\},\,\{\neg,\wedge\},\,\{\neg,\to\},\,\{\uparrow\},\,\{\downarrow\} {¬,,},{¬,},{¬,},{¬,},{},{}
    • p ∨ q ⇔ ¬ ( ¬ p ∧ ¬ q ) p\vee q\Leftrightarrow\neg(\neg p\wedge\neg q) pq¬(¬p¬q)
    • p ∧ q ⇔ ¬ ( ¬ p ∨ ¬ q ) p\wedge q\Leftrightarrow\neg(\neg p\vee\neg q) pq¬(¬p¬q)
    • p ∨ q ⇔ ¬ p → q p\vee q\Leftrightarrow\neg p\to q pq¬pq
    • ¬ p ⇔ ¬ ( p ∧ p ) ⇔ p ↑ p \neg p\Leftrightarrow\neg(p\wedge p)\Leftrightarrow p\uparrow p ¬p¬(pp)pp
    • p ∧ q ⇔ ¬ ¬ ( p ∧ q ) ⇔ ¬ ( p ↑ q ) ⇔ ( p ↑ q ) ↑ ( p ↑ q ) p\wedge q\Leftrightarrow\neg\neg(p\wedge q)\Leftrightarrow\neg(p\uparrow q)\Leftrightarrow(p\uparrow q)\uparrow (p\uparrow q) pq¬¬(pq)¬(pq)(pq)(pq)
    • ¬ p ⇔ ¬ ( p ∨ p ) ⇔ p ↓ p \neg p\Leftrightarrow\neg(p\vee p)\Leftrightarrow p\downarrow p ¬p¬(pp)pp
    • p ∨ q ⇔ ¬ ¬ ( p ∨ q ) ⇔ ¬ ( p ↓ q ) ⇔ ( p ↓ q ) ↓ ( p ↓ q ) p\vee q\Leftrightarrow\neg\neg(p\vee q)\Leftrightarrow\neg(p\downarrow q)\Leftrightarrow (p\downarrow q)\downarrow(p\downarrow q) pq¬¬(pq)¬(pq)(pq)(pq)

四 对偶式

  • 对偶式:在仅含有联结词 ¬ , ∧ , ∨ \neg,\wedge,\vee ¬,, 命题公式 A A A 中,将 ∧ \wedge 换成 ∨ \vee ∨ \vee 换成 ∧ \wedge F F F 换成 T T T T T T 换成 F F F,得到的公式称为 A A A 的对偶式,记为 A ∗ A^* A
  • 内否式:舍友命题公式 A ( p 1 , p 2 , ⋯   , p n ) A(p_1,p_2,\cdots,p_n) A(p1,p2,,pn),对公示 A A A 中的变元 p i p_i pi ¬ p i \neg p_i ¬pi 做代入所得的结果称为 A A A 的内否式,记为 A − A^- A
  • ¬ ( A ∗ ) ⇔ ( ¬ A ) ∗ \neg(A^*)\Leftrightarrow(\neg A)^* ¬(A)(¬A)
  • ¬ A ⇔ ( A ∗ ) − , ¬ ( A − ) ⇔ ( ¬ A ) − \neg A\Leftrightarrow (A^*)^-,\neg(A^-)\Leftrightarrow(\neg A)^- ¬A(A),¬(A)(¬A)
  • ( ¬ A ) − ⇔ A ∗ (\neg A)^-\Leftrightarrow A^* (¬A)A
  • A ⇔ B A\Leftrightarrow B AB 则必有 A ∗ ⇔ B ∗ A^*\Leftrightarrow B^* AB
  • A → B A\to B AB 永真,则 B ∗ → A ∗ B^*\to A^* BA 永真
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值