【数论】同余(七):快速幂、矩阵快速幂

同余问题共7part,我的博客链接:

快速幂

普通快速幂

形式: x n m o d    m x^n \mod m xnmodm

原理:将 n n n 拆成二进制,原式变为 x n 0 × 2 0 + n 1 × 2 1 + ⋯ + n k × 2 k = x n 0 × 2 0 ⋅ x n 1 × 2 1 ⋯ x n k × 2 k = ( x 2 0 ) n 0 ⋅ ( x 2 1 ) n 1 ⋯ ( x 2 k ) n k \begin{aligned} &x^{n_0\times 2^{0}+n_1\times 2^{1}+\cdots+n_k\times 2^{k}}\\=&x^{n_0\times 2^{0}}\cdot x^{n_1\times 2^{1}}\cdots x^{n_k\times 2^{k}}\\=&(x^{2^{0}})^{n_0}\cdot(x^{2^{1}})^{n_1}\cdots(x^{2^{k}})^{n_k} \end{aligned} ==xn0×20+n1×21++nk×2kxn0×20xn1×21xnk×2k(x20)n0(x21)n1(x2k)nk

// 快速幂:计算x^n mod m
ll qpow(ll x, ll n, ll m)
{
    ll ans = 1ll;
    while (n)
    {
        if (n & 1)
            ans = (ans * x) % m;
        x = x * x % m;
        n >>= 1ll;
    }
    return ans;
}

矩阵快速幂

形式: n × n n\times n n×n 的矩阵 A A A k k k 次方: A k A^k Ak

与普通快速幂原理一样,只不过是矩阵乘法

struct matrix
{
    ll a[N][N];
    ll m;
    int n;
    matrix(int x = 0, ll mod) : n(x), m(mod) {}
    void build() // 读入矩阵
    {
        scanf("%d", &n);
        scanf("%lld", &m);
        for (int i = 1; i <= n; i++)
            for (int j = 1; j <= n; j++)
                scanf("%lld", &a[i][j]);
    }
    void init() // 矩阵初始化为单位矩阵
    {
        for (int i = 1; i <= n; i++)
            a[i][i] = 1ll;
    }
    matrix operator*(const matrix &b)
    {
        matrix nxt;
        for (int k = 1; k <= n; k++)
            for (int i = 1; i <= n; i++)
                for (int j = 1; j <= n; j++)
                    nxt.a[i][j] = (nxt.a[i][j] % m + a[i][k] % m * b.a[k][j] % m) % m;
        return nxt;
    }
};
matrix matrix_qpow(matrix A, ll k)
{
    matrix ans(A.n, A.m);
    ans.init();
    while (k)
    {
        if (k & 1)
            ans = ans * A;
        A = A * A;
        k >>= 1ll;
    }
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值